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impurities in transition metals 
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1081 HV Amsterdam, The Netherlands 

Received 22 February 1991, in final form 7 May 1991 

Abstract. Residual resistivities for interstitial Hin the face-centred cubicmetalscu. Ag, Ni, 
Pd and AI as well as in the body-centred cubic metals V, Nb and Ta are calculated using 
the Korringa-Kohn-Rostoker Green function description of Bloch electron scattering by 
impurity clusters. Heavier interstitials like B and C in Pd and C and 0 in Nb are also 
investigated. Inclusion of environmental effects, especially local lattice deformation of the 
first shell of surrounding atoms. turned out to be of crucial importance in order to obtain 
agreement withexperimental residual resistivities. The firmlyestablished absence ofaH/D 
isotope effect in Pd. V. Nb and Ta can be explained. Measured residual resistivities due to 
subslitutional impurities in Cu, Ag, Pd, AI and Nb are reproduced with varying success, 
dependingon the complexityof the electronicstructure of the defect potential. A first shell 
of surrounding metal atoms improves the calculated results, while lattice distortion is not as 
important as it is for the interstitial alloys. 

1. Introduction 

The resistivitychange per atomic per cent of an impurity in a metal, A p ,  can be measured 
accurately. Absolute experimental errors are usually within 20.1 ptB cm/at.%, while 
the resistivity changes themselves vary from 0.1 yC2 “at.% to values larger than 
10 yQ cm/at.% for substitutional impurities like Cr and Zr in Cu [11. Well established 
values for Ap can, for instance, be used to obtain (time-dependent) impurity con- 
centration profiles along a sample [2-4]. In such experiments, where the formation and 
the relaxation of a concentration gradient yields information on the diffusion coefficient 
and possibly on the electromigration effective valence of impurities in the metal, the 
temperature is finite. At zero temperature the resistivity change per atomic per cent in 
dilute metal-impurity systems is termed the residual resistivity and is denoted by po. 

At temperatures where the coupling of lattice vibrations to oscillating impurities 
is negligible, the residual resistivity turned out to be accessible by theoretical and 
computational means. Once the characteristics of the electron-impurity scattering are 
available in terms of a vector field of mean free paths over the Fermi surface, po can 
readily be calculated. Coleridge [5] studied the scattering of electrons by Ni, Fe and A1 
in Cu. In a series of paper Mertig etal [&SI applied the Korringa-Kohn-Rostoker (KRR) 
Green function method to the description of substitutional-impurity scattering in metals 
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and used it to describe the electronic structure of Cu(X) where X stands for a wide 
variety of impurity elements. The calculated results for fourth-row impurities in Cu are 
in good agreement with experimental data while the results for fifth-row impurities in 
some casek deviate strongly from measured data. 

The calculations mentioned above included d-partial-wave scattering but did not 
account for charge-transfer effects and local lattice distortion. An attempt to estimate 
the ,influence of such effects on residual resistivities in Cu and Ag has been made via a 
finite cluster model [l]. It turned out that even the inclusion of lattice distortion and 
charge transfer, the latter being present in the self-consistent potentials [9] used, is not 
to be expected to yield large improvement. In general the finite cluster resistivities 
agreed with experiment as well as or, in some cases, even better than the ones including 
the host band structure. De Ruiter el QI [lo] showed in a pseudopotential study of 
substitutional impurities in In that long-range strain fields around defects influence po 
to SPme extent. 

Recently a computer program able to treat interstitial impurities with one or two 
surrounding shells in FCC metals has become available [ 111. In order to account properly 
for lattice distortion, angular momenta up to 1 = 3 had to be included. A direct solution 
of the set of algebraic equations, derivable from the Boltzmann transport equation, 
according to Sondheimer [12] had to be replaced by an iterative procedure to solve the 
Boltzmann equation. Unfortunately an incorrect factor for the conversion from atomic 
units to pLR cm/at.% meant that all results in I l l ]  should be multiplied by a factor of 2. 

In this paper the KKR Green function method will be employed to calculate residual 
resistivities for interstitial and substitutional impurities in FCC and BCC metals. Both the 
effect of local lattice deformation as well as charge transfer in the impurity cluster are 
accounted for in the calculations to be presented in this paper. The results will be 
compared with available experimental data. From this comparison it should be possible 
to judge the quality of the muffin-tin (MT) potential describing the defect electronic 
structure. Because of the relative accuracy of the experimentally available resistivity 
changes it can be stated that, when theory and experiment match, the electron-impurity 
scattering in the system is described satisfactorily. 

In section 2 the expressions resultingfrom the application of the KKR Green function 
formalism to the Boltzmannequation for electron transport will be presented. In section 
3 the potentials used for the various systems will be discussed briefly. Sections 4 to 7 
present results obtained for various FCC and BCC metals with both interstitial and 
substitutional impurities. For clarity we remark that the main guidance in choosing the 
systems was their occurrence in the research on electromigration as described in [13] 
and[l4]. Insection8 the resultswill be discussedandseveralconclusionsareformulated. 

Atomic units such that f i  = 2m = 1, m being the electron rest mass, are used. As a 
consequence e2 = 2, where e = le1 is the elementary charge. 

J van Ek and A Lodder 

2. Expression for the vector mean free path 

The problem of the conductivity of an electron gas containing randomly distributed 
impuritiesat a low densitycan be treated within Kubo’slinear response formalism [E]. 
The resulting conductivity U to lowest order in the impurity concentration equals the 
conductivity obtained in solving the linearized Boltzmann equation. In a real metal- 
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impurity system one seeks the solution gk of the linearized Boltzmann equation for 
elastic scattering 

The function gk denotes the deviation from the equilibrium distribution function f0(eh). 
Phvgives thetransition probabilityperunit time for anelectron being scattered elastically 
from Bloch state Ik) = Ink) into Ik') = In'k') at energy Ek = E x .  Iri(1) uk denotes the 
group velocity of an electron in state Ik). 

When gk is assumed to be linear in the external electric field E ,  it obtains the form 

gh = e(afO(ek)/aEk)Ak ' E  (2) 
with afo/Je = -S(E - E ~ )  at T = 0. Equation (1) can then be written as 

and has to be solved for the vector field Ah, termed the vector mean free path. The 
electron-impurity lifetime T: is given by 

The second equality in (4) is the optical theorem connecting diagonal elements of the 
transition matrix, T,, to a sum over all transition probability rates for scattering out of 
state (k) .  The transitionprobabilityperunit time foralowimpurityfractioncof the total 
number of atoms N is given by 

P k k ,  = 2XCN/Tkk.12 6(Ek - E h , ) .  ( 5 )  
The current density in the metal sample (volume S2) is given by the volume averaged 
sum over all contributions -eok of electrons in states Ik) weighted by the deviation from 
equilibrium 

Comparing with j = u E  = p - ] E  and converting the summation into an integration over 
the Fermi surface gives 

* with fib = oh/vk. 
Within the KKR Green function formalism the t-matrix elements for electron- 

impurity scattering can be expressed as 

The wavefunction coefficients C,,(k) are labelled by an index n numbering the atoms in 
the impurity cluster and by L = ( I ,  m,), a combined angular momentum index. These 
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coefficientsas well as the back-scattering matrixA are discussedin great detail elsewhere 
[16-18]. The cluster t-matrix with elements ( K  = 6) 

J van Ek and A Lodder 

TtC = -(I/K)J'"(-A~) sin(v; - 171) exp[i(V'l. - 171)] (9) 

contains the phaseshifts for the MT potentials in the impurity cluster in the present (v?) and in absence (77) of the impurity. Lattice distortion at site n is accounted for 
through the matrix J(&) with An a small displacement vector. The matrix elements of 
J(A) are given in terms of Gaunt coefficients CL,.,, spherical Bessel functions j l (KA) 
and real spherical harmonics YL(a) 

JLL.(A)  = 4xi'-? i~CLc' , , j ,"(~A)Y'~(~) .  (10) 
L" 

Thekernelintheintegralequation (3)forthemeanfreepathisdegenerate.Thiscan 
be made explicit upon substitution of equation (8) in (5) 

P k k '  = b c N - b ( & k  - &kt) 2 c ~ ~ ( ( k ) C n ' L , ( k ) Q , L ( k ' ) Q , * ' ~ , ( k ' )  (11) 
IIL 
",L' 

with 

Q.L(k) E 2 T ~ L ,  X Ancn*rCn~c'(k). (12) 
L' "'L' 

Microscopic reversibility demanding that Pkk, = Pvp can be demonstrated ~~ ~ through care- 
ful rearrangement of factors in (11) combined with (12). The equation for the vector 
mean tree path can be rewritten as 

Ak = T! (0, + h C N  "L I n ~ l . . & ( k ) Q h ' ( k ) ) .  (13) 
n ' r  

The vectorial matrix I is an integral over the Fermi surface with matrix elements [ 111 

which shows that, apart from the vector mean free path, the integrand is composed of 
host wavefunction coefficients. The volume of the Brillouin zone is denoted by VBz and 
equals 4 or 2 in units of (Zz/a)', a being the lattice constant, for FCC and BCc metals 
respectively. 

Computer programs to  calculate the residual resistivity of interstitial impurities at 
the octahedral and tetrahedral sites in FCC metals, the tetragonally distorted tetrahedral 
site in BCC metals and of substitutional impurities in FCC and BCC metals, have been 
designed. The Ziman approximation for the vector mean free path [19] 

is used as a starting point in the iterative solution of the Boltzmann equation. Again, 
integrals of the type (14) have to be calculated but now with A, replaced by 5,. The 
QnL(k)inequation(12) can bccalculatedonceandforall,givena metal-impuritysystem 
and a mesh of k-points over the Fermi surface. Manipulations such as the numerical 
integration over the Fermi surface and the multiplication of numerous k-dependent 
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matrices are well suited for treatment by the vector processor of the Cyber 995E 
computer used in the present investigations. 

With the vector mean free path in the Ziman approximation as an initial guess, 
convergence of the mean free path in a sense that 

where two subsequent iterations are numbered by i and i + 1, was attained in typically 
4-loiterations. At this point the residual resistivity had always converged to an accuracy 
better than the smallest experimental error (-0.05 pQ "at.%). The differences 
between the Ziman approximation and the converged results for the residual resistivity 
are generally found to be small, as already noticed by Coleridge [ 5 ] .  

The optical theorem (equation (4)) was fulfilled exactly for embedded impurity 
clusters when lat:ice distortion is absent. This shows that the integrations over the Fermi 
surface are performed with great accuracy. When lattice distortion was admitted, the 
root-mean-square deviation from the optical theorem 

was of order IO-' to depending on lattice distortion.'This small deviation can be 
understood from the different occurrence of the matrixJ(A) in the two factors of (17). 
This matrix accounts for lattice distortion through an expansion in terms of Bessel 
functions. A possible truncation error in this expansion due to the angular momentum 
cut-off at I = 3 is quadratically present in Pkk' while in -2c Im T,, it occurs linearly. 

3. Potentials 

Among the MT potentials describing the metal-impurity systems in this study are those 
used in calculating the electromigration wind valence in [13] and [14]. In addition 
potentials with a smaller MT radius of the host metal atoms (and thus a larger radius for 
the interstitial) are used for some ~ccmetalscontaininginterstitial impurities. Adetailed 
description of the construction of the MT potentials has been given elsewhere [13, 171. 
Here it isonly mentioned that the host potentials are constructed startingfrom relativistic 
atomic charge densities, obtained from a HartreeFock-Dirac-Slater calculation [20] 
on atoms with a given electronic configuration. 

Impurity potentials, constructed in a similar way, are made to satisfy a generalized 
Friedel sum rule [17,21], which assures that the total electronic charge difference due 
to the impurity is accounted for. This is accomplished through a procedure whereby the 
MT potentials are shifted by a small constant potential up or down the energy scale. Such 
an energy shift slightly alters the scattering properties of a MT potential. Resulting 
changes in the charge density around the MTpotenfial are usually interpreted as a change 
in the amount of screening associated with the potential [22]. In the interstitial systems 
the MT radii of the host and the interstitial atoms correspond to an interstitial MT sphere 
touching the atoms in the first surrounding shell. Fulfilment of the Friedel sum rule in 
these cases was obtained by shifting only the potentials of the first-shell atoms, all with 
the same amount of energy. The interstitial potential itself was always left unaltered. 
On the one hand, it is unphysical to accommodate large amounts of screening charge 
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Table 1. Residual resistivities in pS2 cm/at.% for interstitial impurities H, B and C at the 
octahedral site in FCC metals. Column 2 shows calculated values for a single interstitial in a 
perfecl host Columns 3 to 9 display calculated po values as a function of ihe lattice deform- 
ation A, as a percentage of a, of the fin1 shell. The last two columns show available 
experimental information. 

P O  Experimental 
, ..,,..... ."_l.."-.l.."."_.-.*.., .,,".** .,.,...,., ,.., , , , , ~~ ~~ 

System Imp. only 0% 0.5% 1% 1.5% 2% 2.5% 3% pa A (%) 
,., , ,.,",,,. ..I./ , , , ,  , , ,,, , ,  ,,, ~ . .  

Cu(H) 1.68 1.80 1.83 1.86 1.90 1.95 1.50 
2.66 2.71 2.76 2.81 2.87 2.91 3.02 3.09 

Ag(H) 2.11 2.11 2.15 2.19 2.24 2.30 1.34 

Ni(H) 0.W1 0.51 0.64 0.75 0.88 1.06 0.67 

Pd(H) 0.001 0.30 '0.39 0.52 0.68 0.88 0.32 1.0 

Pd(B) 0.03 1.55 1.781.91 2.082.26 2.452.05 2.7 

0,002 0.22 0.35 0.54 0.80 1.05 

0.10 2.48 2.83 3.43 3.72 4.02 

0.26 3.14 3.38 3.79 3.94 4.07 
Pd(C) 0.07 1 .I1 2.13 2.32 2.58 2.86 3.21 2.7,3.8 2.0 

AI(H) 0.05 0.09 0.08 0.08 0.08 0.08 

Table 2. Calculated residual resistivities in pS2 cm/at.% for interstitial H at the tetrahedral 
siteof ~ c m e t a l s .  Column 2showscalculatedvalues lor a single interstitial ina perfect host. 
Columns 3 to 6 display calculated po values as a function of the lattice deformation of the 
first shell. 

, , , ,  , , . l" I , . ,  ,...-,,.,, .*,,, .,,, ,I ,,,,,.,.,,.. ,, , , , , , , ,  

PO 
, . ,, .. l__""l.-l..,.~~"."~~,, ..,,, ",.S ,.,., ,.,,, ,, ,, ,,,, .,. , 

System  imp. only O%, 1% 2% 3% 
.~ . - , , . ........,...."-1-I""11114. ,,,, I,,~"I"lu ,,,, ,, ,,., , ,, , , , ,  , ,." 

Cu(H) 0.85 0.97 1.02 1.07 1.14 
Ag(H) 1.32 1.57 1.65 1.73 1.82 
Pd(H) 0.013 0.26 0.38 0.56 0.91 
AI(H) 0.07 0.13 0.11 0 , l l  0.12 

, . ,,*..I . ,,., , . , ,Ij 

on the interstitial by shifting its potential rigidly by a large constant energy while, on the 
other hand, in test calculations the Friedel sum was found to be rather insensitive to the 
shift applied to interstitial hydrogen. 

The strategy for shifting the potentials of the substitutional systems essentially 
amounts to using asingle constant energy shift for all the atoms in the impurity cluster. 

4. Results for interstitials in FCC metals 

Tables 1 and 2 compile calculated residual resistivities, converged in the sense of the 
inequality (16), for several metal-impurity systems. These tables deal with impurities at 
the octahedral and at the tetrahedral site respectively. In these tables the first column 
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Table 3. Lattice constant a and the interstitial MT radii at the octahedral and tetrahedral 
( R k )  sites pertaining to the host MT radius (RB) are given in Bohr. The Fermi enerEies f F  

corresponding to the different RE are in Ryd. 

Metal a RB Octahedral Tetrahedral &F 

C" 6.831 2.415 1.003 0.543 0.584 
2 . m  1.195 0.738 0.634 
2.049 1.366 0.909 0.627 

CUSCP 6.76 2.39 0.630 

Ag 7.722 2.730 1.351 0.8% 0.527 

Ni 6.694 2.176 1.171 0.723 0.649 

Pd 7.351 2.389 1.286 0.794 0.515 
2.205 1.470 0.978 0.577 

AI 7.623 2.478 1.334 0.823 0.626 

V 5.713 1.916 0.941 1.278 0.782 

Nb 6.238 2.441 0.729 
2.092 1.027 1.395 0.852 

Ta 6.238 2.092 1.027 1.395 0.927 

of pu values shows the outcome from a calculation neglecting charge transfer to and 
lattice distortion of the first shell of surrounding atoms. In this case the Friedel sum rule 
is not satisfied, for the interstitial impurity potential was always left unshifted (13, U]. 
The subsequent columns show pu as a function of the radial outward deformation of the 
first shell of perturbed host atoms. The Friedel sum rule was made to equal the number 
of valence electrons of the impurity by applying a constant energy shift to the MT 
potentials in the first shell. The last two columns give experimental data, if available. 
Whenever there are two lines of resistivities present, the first line corresponds with the 
description utilizing a larger MT sphere for the host. The second line corresponds with a 
somewhat smaller host-MT radius but a consequently larger MT radius for the interstitial. 
Table 3 summarizes the different MT radii for the host and for the interstitial along with 
Fermi energies and lattice constants. 

In the interstice in FCC metals the two sites with highest point-group symmetry are 
the octahedral (point group Oh) and the tetrahedral (Td) positions. Commonly the 
octahedral site surrounded by a first shell of six metal atoms is believed to be the 
equilibrium position for small interstitials. The second shell of eight atoms around the 
octahedral site was shown to be of only minor influence on the residual resistivity 
[I l l  and therefore will not be considered. The tetrahedral site is surrounded by four 
equivalent metal atoms. 

4.1. Cu(H) andAg(H) 

It is seen in Cu and Ag that the addition of a first shell of host atoms, with or without 
lattice distortion, does not influence the hydrogen residual resistivity much. This means 
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that the electrons in Cu and Ag are most strongly scattered by the impurity itself, its 
surrounding being not too important. This was noted earlier from a comparison of the 
influenceofthefirst shellondeHaas-van Alphen (dHvA) scatteringquantitiesinCu(H) 
andPd(H) [24]. InPdtheelectron-impurityscatteringcouldonly becalculatedcorrectly 
upon explicit inclusion of the first shell while in Cu a (single site) average t-matrix 
approximation already gave reasonable results [25]. Enlargement of the MT sphere of 
the octahedral hydrogen atom inCu from 1.195 to 1.366Bohr, thereby decreasing the 
host MT radius, resulted in overall larger values for po by a factor of approximately 1.5 
(see table 1). This is in agreement with the above-mentioned behaviour because a larger 
interstitial implies a stronger scatterer. The smaller interstitial MT radius, corresponding 
to 0.175a. resulted in pa values still exceeding the experimental result [26] po = 
1.50pQ cm/at.%. At the tetrahedral site in Cu the resisitivity is again smaller simply 
because of the smaller MT radius for the proton. A host b f ~  radius corresponding to 
touchingspheresresultedinvaluesof 1.20and 1.34 pQ “at.% forthesingle hydrogen 
and the complete impurity cluster respectively. In this case there is no possibility to 
account forlatticedistortion. Thesensitivityto thechoice o f t h e ~ ~ r a d i i  isobservedfor 
other systems as well and will be returned to in the concluding section, 

In Ag an interstitial MT radius of 0.175a at the octahedral site leads to values much 
larger than the measured value [271. At the tetrahedral site a calculation including the 
first shell does give resistivities in better agreement with experiment. In a previous 
publication [ll] this site was ruled out as a possible equilibrium position for hydrogen 
or deuterium in Ag. This conclusion was founded on erroneous results and has to be 
rejected. 

From the results for Cu(H) and Ag(H) it is learned that a hydrogen atom in these 
metalsconstitues a very strong scatterer, regardless of the precise environmental details. 
It is as if the Cu and Ag lattices could be replaced by a jellium with the correct Fermi 
energy, still imposing bounds on the MT radius of the impurity via their lattice constants. 
The actual free-electron values of p o  can be obtained from the famous expression of 
Friedel [28] 

J van Ek and A Lodder 

where Z, is the host valence (i.e. 1 for Cu and Ag) and $ are the same hydrogen phase 
shiftsasusedintable 1 (RL = 0.175a). Onethenfindsthevalues2.98pQ “at.% and 
3.54pQ cm/at.% for Cu(H) and Ag(H) respectively. 

4.2. Ni(H),  Pd(H),  Pd(B) and Pd(C) 

The residual resistivity in Ni(H) was measured at 4.2K [27] where Ni is in its ferro- 
magnetic phase (Tc = 627 K ) .  In this work Ni is treated as a paramagnetic metal and it 
is therefore interesting that the calculated p o  agrees so well with experiment at about 
0.75% lattice distortion. This can be understood from the fact that at the Fermi energy 
the density of states (DOS) for the minority spin is much greater than that of the majority 
spin. The DOS and the dispersion relation of paramagnetic Ni and of the minority spin 
in ferromagnetic Ni are much alike [29]. If the electron-impurity scattering is assumed 
to be spin-independent, it is then not completely surprising that a paramagnetic Ni host 
gives a good description. 

Both in Ni(H) and in Pd(H) the influence of the perturbed surrounding atoms is 
astonishing (see table 1). Lattice distortions are deduced from relative volume changes 
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per unit concentration [30]. At 1% lattice distortion the residual resistivity is increased 
by factors of 750 and 520 respectively (Rh = 0.175~). The residual resistivity due to 
the hydrogen alone is negligible! As a consequence a larger MT radius (f?h = 0 . 2 ~ )  for 
H in Pd does not alter the results as much as was the case for the Cu(H) system. At a 
lattice distortion of about 1% the difference vanishes. In Pd(H) agreement with the 
measured resistivity is reached between 0% and 0.5% lattice distortion for the smaller 
as well as for the larger MT radius. 

At the tetrahedral site (see table 2) in Pd hydrogen constitutes a stronger scatterer. 
Theresistivitydue to the hydrogenaloneisafactorof13largerthanthatat theoctahedral 
site, in spite of its smaller MT radius (see table 3). Total cluster values, however, are 
smaller. 

Heavier impurities in Pd, such as B and C, again are weak scatterers by themselves. 
Only inclusion of the first shell surrounding the octahedral site makes that the calculated 
po become comparable with experimental results. For Pd(B) the smaller interstitial MT 
radius clearly gives the best agreement with experiment. At 2% lattice distortion, which 
is below the experimental value [17] of 2.7%, the measured results of Cadeville and 
Lerner I311 are reproduced. An amusing situation exists for Pd(C). At 2% lattice 
distortion [17] the experimental residual resistivity of Cadeville and Lerner [31] com- 
pares nicely with the value obtained in using the smaller interstitial MT radius. The result 
of Bakker eta1[32] is in fine agreement with a spatially more extended carbon potential, 
at the same lattice distortion. 

4.3. AI(H) 

Neither the residual resistivity nor the lattice deformation due to the proton in AI are 
known. Effective-medium calculations for AI(H) by Puska and Nieminen 1331 indicate 
a lattice distortion of the first shell of approximately 1.6% at the octahedral site and 
3.4% at the tetrahedral site. 

From tables 1 and2it isseen that latticedistortiondoes notinfluencep"inasystematic 
way. Inclusion of the first shell enhances the residual resistivity by a factor of almost 2 
with respect to hydrogen alone. Compared with the other resistivities (first shell 
included) in tables 1 and 2, po is small (0.08 to 0.13 p 8  "at.%). 

Thislowresistivityincreaseissurprising, for Alisatrivalent simplemetal. Onemight 
expect formula (18) togive a result comparable with the above-mentioned values. This 
is not the case at all. The Friedel expression for po gives 1.02 p B  "at.%. 

In search of an explanation for this unexpectedly low residual resistivity additional 
finite cluster calculations [34] have been performed. In such a calculation the impurity 
cluster consists of the same cluster potential as was used in the real-metal calculation. 
The crystal potential, however, has been replaced by a constant potential, the MT zero 
of the host metal. One then finds a resistivity of po = 0.64 ~8 cm/at.% at 0% lattice 
distortion. Replacement of the first-shell atoms by AI host atoms leads to po = 
0 . 6 6 ~ 8  "at.%, which is to be compared with the impurity-only result for AI(H) in 
table 1. These values still differ appreciably from those given in table 1. 

From a comparison of the host wavefunction around the interstitial site 

with the well known plane-wave expansion 



7372 Juan Ek and A Lodder 

one finds that for free-electron metals it holds that 

ClL(k)  = (4n/Q*/’) eik.*j i’YL(k). (21) 
Herexisacoordinatecentredaround the interstitialsiteR,andQ is theunit-cellvolume. 
The spherical wave j x) is the product of a real spherical harmonic YL@) and a spherical 

the Fermi surface when compared with Cu, Ag and especially with the situation in Pd. 
In this way complete failure of the free-electron approximation in the interstitial region 
in AI could be ruled out. 

The ultimate cause of the low po value for the AI(H) system was found in the 
remarkably strong influence of back-scattering by the AI crystal. To this end the A- 
matrix describing the effect of back-scattering [17, 181 was set equal to 1, the unit 
matrix. This means that all multiple scattering effects in electron impurity scattering 
are neglected. Residual resistivity calculations in AI(H) with A = 1 resulted in po = 
0.49pQcm/at.% for the impurity cluster at 0% lattice deformation. This value is a 
factor of 5.44 larger than the corresponding value in table 1. In Cu(H) and Ag(H) po 
increased by factors of only 1.12 and 1.35 upon takingA = 1. The fact that in the finite 
cluster calculations on AI(H) relatively large values of po were also found demonstrates 
that the octahedral seven-atom cluster embedded in a constant potential does not 
provide an adequate description of the back-scattering by the whole Al crystal. 

In advance of section 7 it can be stated that for substitutional impurities, e.g. Cu 
in AI, the importance of back-scattering is less pronounced than it is for interstitial 

.impurities. The Friedel expression, with differences of host and impurity phase shifts 
instead of just the impurity phase shifts, gives po = 0.34 pt8 “at.%. A calculation in 
an AI crystal with A = 1 gives po = 0.68 pQ “at.%. Correctly accounting for back- 
scattering between the Cu impurity atom and the otherwise perfect AI lattice gives po = 
0.93 pQ cm/at.%. 

Bessel function j,( $- E ~ x ) .  In AI equation (21) was obeyed quite well over large parts of 

5. Results for interstitials in BCC metals 

Only the tetrahedral site (point group DY) will be considered, for this is known to be 
the equilibrium position for hydrogen atoms in V, Nb and Ta [2.35]. Although larger 
atoms like C and 0 are presumably located at the octahedral site (DQ) they will also be 
placed at the tetrahedral site in the present work. in order to get an impression of po. A 
fust shell of four equivalent atoms surrounds the tetrahedral site. 

Owing to the lower symmetry of these systems when compared to impurities in FCC 
metals, the required computer time for the evaluation of the Fermi surface integrals in 
equation (14) increased significantly. Whereas for an octahedral impurity in an  cc 
metal the integrations could be restricted to the irreducible 1/48th part of the Fermi 
surlace, in BCCSyStemS the integrations had to be extended to 6/48th part. 

An interstitial at a specific tetrahedral site results in a diagonal 3 x 3 resistivity 
tensor with, for instance, (Po)= # (Po), = (po)zz. Each host atom in the BCC lattice is 
surrounded by a collection of 24 tetrahedral sites reflecting the cubic symmetry of the 
host metal. Averaging over all possible impurity orientations, i.e. over these 24 sites, 
results in po = $trpo. 

All experimental data for H in V [3639], Nb [37-391 and Ta [37.39,40] have been 
obtained at definitely non-zero temperatures. The resistivity due to hydrogen turned 
out to depend only very weakly on temperature in the range 390 to 940 K [39]. So, if one 
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Table 4. Residual resistivities in pi2 cm/at.% for interstitial H, C and 0 at the tetrahedral 
ritein Bccmetals. Column2showscalculated values for asingle intentitialin aperfect host, 
Columns 3 to 8 display calculated po values as a function of the lattice deformation of the 
Brst shell. The last two columns show available experimental information. 

~ ~ 

PO Experimental - 
System 1mp.only 0% I% 2% 3% 4% 5% Ap A W) 
V(H) 0.26 0.37 0.47 0.74 1.11 1.57 2.11 0.85-1.12 4.3 

Nb(H) 0.22 0.34 0.46 0.72 1.07 1.52 2.08 0.62-0.69 3.0 
Nb(C) 2.58 3.51 
Nb(0) 3.36 3.69 

Ta(H) 0.13 0.16 0.29 0.55 0.94 1.47 2.09 0.714.92 2.5 

compares calculated po values with experimental resistivity changes Ap, the validity of 
Mathiessen's rule is implicitly assumed. The experimental lattice distortions in table 4 
have been taken from apaper by Behr eta/  [41]. 

5.1. V(H),  Nb(H) and Ta(H) 

The single hydrogen in a perfect vanadium lattice causes an already considerable res- 
istivity (see table 4). When the first shell is accounted for in the calculation, a marked 
dependence on lattice distortion is observed. The range of experimental Ap values 
falls between 2% and 3% lattice distortion, which is more than 1% lower than the 
experimental value of 4.2%. 

Both in V(H) and in Nb(H) inclusion of the first shell with 3% lattice distortion 
enhances the resistivity by a factor of about 4.5. In  Nb the experimental Ap values are 
reproduced at about 2% lattice distortion, which again is 1% below the experimental 
value of 3%. It is noted that the residual resistivity of hydrogen in V and Nb behaves 
almost the same as a function of lattice deformation, although the lattice constants of 
the two metalsare different (see table 4). This means that it can be considered as justified 
toconclude that the experimentally founddifferencein Ap isaconsequenceofa different 
lattice deformation around the hydrogen atom. 

ForTa(H) thesituationisdifferent. Here the hydrogenatomalone leads toaresidual 
resistivity that is approximately half of that in V and Nb. Addition of the first shell and 
accounting for 2% to 3% lattice distortion and for charge transfer from the hydrogen 
atom to the surrounding atoms results in po values that compare well with the exper- 
imental Ap range for Ta(H) in table 4. This local deformation of the lattice is in 
agreement with the experimental value of Behr et al[41]. At higher percentages lattice 
distortionp,,approachesthevaluesfoundinVandNb. Thisillustratesthelargeinfluence 
of local lattice distortion in these BCC metal/hydrogen systems. The contribution to 
po from the hydrogen and the accompanying charge transfer to its surroundings is 
overshadowed by the increase in cross section due to the lattice distortion caused by the 
proton. 

In addition the residual resistivity of tetrahedral C and 0 in Nb was calculated. No 
experimental data are available. From table 4 it is seen that these impurities alone give 
a considerable change in resistivity when compared with H. If the first shell is included 
(3.5% lattice distortion) the po values increase by a factor of 1.4 and 1.1 for C and 0 
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respectively. Thiscontrastswith the much largerfactorof approximately5for hydrogen. 
Carbon and oxygen behave more or less like a real single-site point defect while the 
effect of interstitial hydrogen on the electronic structure of Nb largely proceeds via the 
first shell. 

Juan Ek and A Lodder 

6. Hydrogenldeuterium isotope effect 

The absence of a significant isotope effect in po for hydrogen in Pd [32,39] and in Ap in 
V, Nb and Ta [37, 391 is firmly established by experiment but is not self-evident [39]. 
Dingle temperatures and relative cross-sectional area changes, the so-called de Haas- 
van Alphen scatteringquantities, do depend on the kind of hydrogen isotope in Pd [42- 
441. This isotope effect is large only for the two extrema1 orbits on the small ellipsoidal 
hole pockets around the point X in k-space. These X-hole pockets contribute less than 
5% to the total Fermi surface area. This is also reflected in the contributions to the 
conductivityinthedilutesystem. InPd(H), at 1% latticedistortion, thetotalconductivity 
ois  given by the sum of ur = 0.88, U,, = 0.90 and ox = 0.14fiQ-' cm-' at.% for the r 
sheet, the jungle gym (JG) and the X-hole pockets respectively. So possible isotope 
effects in ox are not expressed very strongly in the final value for po. Now, realizing that 
the difference in  the induced lattice distortion vanishes or at least is very small for the 
two isotopes (301, the situation in Pd becomes clear. The hydrogen isotope, which by 
itself is an extremely weak scatterer, introduces a lattice distortion of 1% (both for H 
and D) giving rise to the measured po value. Differences in po due to a difference in the 
zero-point motion (ZPM) for the isotopes are of the same order of magnitude as the 
resistivity due to the hydrogen alone (i.e. -0.001 pQ cm/at.%), which is beyond the 
usualexperimentalaccuracy. Areducedconductivity~~byafactorof2,due toapossible 
remnant vibration in the Pd(D) cluster as proposed by Oppeneer cl a[ [45], would not 
really change the conclusion concerning the sample resistivity. 

In V, Nb and Ta the situation is slightly different, for the hydrogen isotope alone 
gives rise to an appreciable residual resistivity when compared with the calculation 
includingtheperturbedfirst shell(seetable4). Inordertoinvestigatepossiblez~~effects 
the residual resistivity was recalculated but now with the impurity slightly displaced from 
its equilibrium position in the [loo] direction. Such displacements can be accounted for 
[17] in using the appropriate interstitial displacement vector A, in equation (10). No 
difference in the lattice expansion due to H and D in Nb could be observed [30]. A 
3% lattice distortion allows for a maximum value A, = 0.076a. thereby still avoiding 
overlapping spheres. Calculated po values did vary from 1.07 pQ "at.% at A, = 0 to 
1.02fiQ cm/at.% at A, = 0.051. Fromthisnolargez~~effectsare tobeexpected, which 
confirms the experimental observations. 

7. Substitutional impurities 

In BCC metals as well as in FCC metals an impurity cluster, consisting of a solute metal 
atom and its symmetrically perturbed surroundings, exhibits cubic point-group 
symmetry. This high symmetry is destroyed in considering an impurity-vacancy pair. 
However, averaging over all orientations of the pair ensures that an isotropic residual 
resistivity is obtained in cubic host metals. 
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Table 5. Residual resistivities in pQ cm/at.% for dilute substitutional alloys in FCC and BCC 
metals. ColumnZshowscalculated values for thesingle impurityin aperfect host. Columns 
3 to 6 display calculated po values as a function of the lattice deformation of the first shell. 
The last column show available experimental information. 

Pn 

System Imp. only -0.5% 0% +OS% 1% Experimental 

Cu(Cu) 
Cu(Ag) 
Cu(Rhd%') 
Cu(Rh d's') 
Cu(Rh SCP) 
Cu(vac) 
Cu(Ag, vac) 

Ag(Ag) 
A d W  
Advac) 
Ag(Sb, vac) 

A W )  
AI(Cu) 
A V )  
AI(Ni) 
Al(vac) 
AI(Cu. vac) 

Pd(Pd) 

Nb(Nb) 
Nb(Ta d%*) 
Nb(TadP') 
Nb(Cr) 
Nb(Fe) 
Nb(vac) 
Nb(Ta d's', vac) 
Nb(Ta d'sl, vac) 
Nb(Cr, vac) 
Nb(Fe,vac) 

Pd(Ad 

0.0 
0.189 
0.636 

2.99 
0.864 
0.977 

0.0 
4.88 
0.834 
6.52 

0.0 
0.932 
2.06 
1.64 
0.926 
1.85 

0.0 
0.519 

0.0 
0.044 
0.522 
0.400 
5.94 
5.70 
5.80 
6.25 
6.15 
8.33 

15.7 

0.004 0.0 
0.150 0.140 
1.006 0.947 
14.6 14.1 

2.98 
1.00 0.964 

0.004 0.0 
5.43 5.51 
0.994 0.960 

0.003 0.0 
0.840 0.833 
4.50 4.49 
1.68 1.66 
0.936 0.954 

0.047 0.0 
0.550 0.532 

0.042 0.0 
0.098 0.035 
0.569 0.413 
0.434 0.429 
6.36 6.50 
6.48 6.50 

0.003 0.013 
0.140 0,151 0.14 
0.907 0.884 4.03 f 0.06 
13.6 13.1 

0.939 0.85 f 0.21 

0.004 0.015 
5.60 5.69 6.2 10.2 
0.938 

0.003 0.011 
0.830 0.80 i 0.06 
4.48 7.6 f 0.2 
1.64 2.9 f 0.3 
0.974 

0.042 0.162 
0.597 0.746 1.23 

0.040 0.158 
0.054 0.23 
0.348 
0.511 0.683 
6.66 
6.57 

Table 5 displays calculated po values. For the systems, given in the first column, both 
single-site and impurity cluster calculations have been performed. In a first calculation 
only the impurity, without any environmental effects, was taken into account (column 
2). No constant energy shift has been applied to the impurity potential, so the Friedel 
sum criterion was generally not met. The first shell of 12 (FCC systems) or eight (BCC 
systems) perturbed host atoms was accounted for in the second type of calculation. The 
columns 3 to 6 show the variation of po as a function of lattice distortion, which was 
varied between -0.005~ and 0.01a for the radial inward or outward displacement of the 
first shell atoms. In  these calculations the potentials were made to fulfil the Friedel sum 
rule by application of a single constant energy shift to all MT potentials in the embedded 
cluster. The last column gives experimental data, if available. 
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7.1. ~ccmetals 
In Cu, Ag, AI and Pd a host MT radius of 0.325~ was used, which corresponds to 
non-touching spheres, ensuring that a slight displacement of first-shell atoms can be 
accounted for. For the first time the effect on pa of a perturbed first shell, including 
lattice distortion, could be investigated without approximating the real host embedding 
and beyond the applicability range of a model (pseud0)potential description of the host, 

Mertig et d [ 7 ]  calculated the residual resistivity of many impurities in Cu using 
self-consistently determined impurity potentials [9]. In these calculations one single 
perturbed site was accounted for in an otherwise perfect host. From a comparison of 
finite cluster results and these single-site results including the Cu band structure with 
experimental data [l], it was found that for Cu(Ag) the calculated pa values are struc- 
turally too low. It is seen that the residual resistivity for Cu(Ag) in table 5 ,  using 
constructed potentials, is in surprisingly good agreement with experiment. Note that 
lattice distortion affects the results only slightly, which also is reflected in the artificial 
Cu(Cu) system. 

In Cu(Rh) Julianus et ai [46] accurately measured po. Constructed potentials with 
Rh in its experimental atomic ground state ([Kr]4ds5s') result in values far too low, 
while the [Kr]4d95sa configuration for Rh leads to values that are much larger than the 
experimental value of 4.03 * 0.06 pc8 cm/at.%. Presumably the electronic structure of 
Rh in Cu is intermediate between [Kr]4d85s' and [Kr]4d95s0. This is in accordance with 
thepovaluesobtainedfromself-consistent potentials (Cu(Rh scp)in table 5 ) .  Although 
here a lattice constant a = 6.76 Bohr wasusedin combination with touching~~spheres ,  
the results are improved significantly when compared with those obtained from con- 
structed potentials. For a vacancy in Cu the agreement with experiment is within the 
experimental error, regardless of the presence of a first shell with or without lattice 
distortion. 

One could wonder how the results are influenced upon using host MT radii cor- 
responding to touching spheres, for local lattice distortion does not seem to be that 
important. In order to get an impression of the residual resistivities obtained in this way 
asingle-site calculation wasperformed. The hcradiusand Fermi energy are given in table 
3. Resistivities of 0.12pQcm/at.% for Cu(Ag), 0.57pQcm/at.% for Cu(Rhd*s'), 
13.8pQcm/at.% for Cu(Rh d') and 1.052pQcm/at.% for Cu(vac) are found. The 
resistivity due to a vacancy is increased and approaches the calculated value reported in 
[l]. All other pa values are lowered. The nice agreement with experiment in Cu(Ag) 
and Cu(vac) is spoiled. 

In Ag(Sb) qualitative agreement with experiment is obtained. For a larger MT radius 
the situation is expected to get worse on the basis of former observations made in, for 
instance,Cu(Rh). Avacancy in Aggives rise to aresidual resistivity that isslightlylower 
than that in Cu. Inclusionof the first shellindeedinRuencesp,aIthoughlatticedistortion 
seems to be of little importance. The resistivity due to a Sb-vacancy pair is larger than 
the sum of the resistivities caused by the individual defects, though the difference is not 
spectacular. 

In pure AI again a very small residual resistivity was found upon deforming the 
lattice. For AI(Cti) the agreement is within 17% in the single-site case. The calculated 
value of po equals the experimental value after adding the first shell, as was found before 
in Cu(Ag). In the dilute V and Ni alloys of AI the agreement between theory and 
experiment is less satisfactory. The experimental data on AI alloys in table 5 were 
taken from [47]. The resistivity in AI(Cu, vac) almost equals the sum of the single-site 
resistivities in AI(Cu) and Al(vac), thereby neglecting environmental effects. 

~. 



Residual resistioity in transition metals 7377 

In Pd the Fermi level falls in the d band. This gives rise to a complicated electronic 
structure at the Fermi energy, contrary to the situation in Cu and Ag, where the d band 
is well below cF. In AI no d electrons are present at all. The sensitivity to lattice 
deformation is found to  be a factor of 10 larger in Pd(Pd) when compared with Cu, Ag 
and AI. This cannot be explained simply from the density of states at the Fermi energy 
for this effect would point in the opposite direction. A plausible explanation is offered 
in realizing that d electrons behave rather localized (Bat E , ~  versus k relation) in contrast 
with s electrons (parabolic shape of E,& versus k relation). When a transition-metal atom 
(Pd, Cu or Ag) is displaced from its equilibrium position it  will drag its d electrons along, 
giving rise to an appreciable alteration in the spatial charge distribution. In Pd the d 
electrons at E ~ ,  in Bloch states with only little dispersion, carry the electric current. 
These d electrons are strongly scattered by the perturbation potential resulting from the 
lattice deformation which in turn is expressed as a substantial resistivity increase. Truly 
delocalized s electrons at .cF in Cu and Ag are not that sensitive to the precise position 
of the host metal nuclei, indicating that for these metals a jellium-like description of the 
electrons at eF might lead to satisfactory results. 

For Pd(Ag) the agreement with experiment is not very satisfactory, although the 
situation is not as bad as in non-self-consistent Cu(Rh). At 1% lattice distortion the 
calculated residual resistivity is only about half of the experimental value, probably due 
to the complicated electronic structure of the palladium host and of the impurity cluster. 

7.2. Nb, a sccmetul 

Up to the present no calculated residual resistivities in BCC transition metals have 
been reported on. Presumably the limited number of systems for which p o  has been 
determined experimentally is a drawback. However, considerable interest exists in the 
scattering properties of substitutional impurities in Nb in connection with electro- 
migration theory [14,48,19]. In this section severalimpuritiesin Nb will receiveattention 
as well as vacancy-impurity pairs. An elementary step in the diffusion (and thus in 
electromigration) of substitutional impurities in Nb is thought to proceed via a 
mechanism whereby the impurity exchanges position with a neighbouring vacancy. 

In close analogy to the FCC systems treated in section 7.1 a host brr radius smaller 
than that corresponding to touching spheres (RhF* = 0.433~) was used. Again the same 
MT radius (0.335~) as for the interstitial-impurity study was used. Note however that in 
BCC metals the reduction of this radius compared with the radius corresponding to 
touching spheres is larger than in FCC systems. 

A marked dependence on lattice distortion in Nb(Nb) is found. The same explanation 
as for Pd(Pd) applies. For Nb also the Fermi level crosses the flat d bands. Interestingly 
the resistivity increase due to Ta at 0.5% lattice distortion is comparable to po in Nb(Nb) 
at 0.5% lattice distortion. A vacancy in Nb, which corresponds to a 4d45s’ valence 
electron deficiency, gives p o  = 6.50 fiS2 cm/at.% at 0% lattice distortion. The vacancy 
alone results in a lower value (5.70,uQ “at.%). These large residual resistivities arise 
from the removal of four localized d electrons around the Fermi energy. The residual 
resistivity of the Ta-vacancy pair, neglecting environmental effects, is dominated by the 
vacancy. This also holds for the Cr-vacancy pair. Replacement of a Nb atom by an Fe 
atom with an [Ar]3d65s2 configuration also leads to a considerable resistivity, com- 
parable to that due to a vacancy. It is therefore not surprising to find the Fe-vacancy 
pair giving the largest residual resistivity in Nb of all defects investigated here. Possible 
magnetic moments on Cr or  on Fe have been neglected. 
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Using a larger host MT sphere of 0 .391~  (see %ble 3) resulted in lower residual 
resistivities in Nb(vac). Neglecting the first shell a value po = 4.53 pQ “at.% is cal- 
culated, which islower than thevalue of 5.70 pS2 “at.% in the secondcolumnoftable 
5. Further it is noted that the experimental po value for the Nb(Ta) system is best 
reproduced when using the (Xe]4fr45d46s’ atomic configuration for the Ta atom. This is 
the analogue of the Nb [Kr]4d45s’ atomic configuration as used in the construction of 
the host potential. The alternative [Xe]4f’45d36sz configuration, which is the ground- 
state configuration in atomic Ta, resulted in much lower residual resistivities. Such a 
marked dependence of po on the specific electronic configuration of the atom used in 
theimpuritypotentialconstruction,asfoundforTainNborRhinCu, has been reported 
on earlier by Mrosan and Lehmann [SO]. In using a larger host m radius (0.391~) the 
residual resistivity due in Nb(Ta d4sr) was lowered slightly from 0.413 pS2 “at.% to 
0.364 pQ cm/at.% while for Nb(Ta d3s’) a relatively large change from 0.035 pQ cm/ 
at.% to 0.016pQ cm/at.% is observed. In these calculations lattice deformation was 
absent while the Friedel sum rule was satisfied. 

8. Conclusions 

Residual resistivities for interstitial and substitutional impurities in both FCC and Bcc 
metals have been calculated. The KKR Green function method was used to calculate 
the scattering t-matrix for an impurity cluster, which was modelled by a collection of 
spherically symmetric muffin-tin potentials. This cluster was embedded in an otherwise 
perfectcrystal, alsomodelled byalattice0fMTpotentials.The influenceof the perturbed 
metal atoms surrounding the impurity on po was investigated thoroughly for the first 
time. Local charge neutrality in the impurity cluster was guaranteed by requiring fulfil- 
ment of the Friedel sum rule. 

The influence of local lattice distortion around interstitial as well as substitutional 
impurities is pronounced in metals where the Fermi energy falls in the d band of the DOS 
(Ni, Pd, V, Nb and Ta). Other metals having an s like (Cu and Ag) or sp like (AI) DOS 
at E~ do not show a large dependence of po on the lattice distortion. This is explained 
through the localized character of the d electrons when compared with the s and p 
electrons. A slight displacement of a transition-metal atom will drag the d electrons 
along with it, giving rise to a relatively large local change in charge density. The d 
electrons in Bloch states at E~ with a flat dispersion relation are strongly scattered by the 
resulting potential. Electrons in delocalized s-like Bloch states do  not follow the metal 
atoms that strictly, resulting in a much smaller resistivity increase as a function of lattice 
deformation, 

It was found that, on the one hand, hydrogen alone in Cu and Ag constitutes a strong 
scatterer contributing about 90% of the total resistivity. On the other hand, in Pd and 
Ni it does not result in a significant residual resistivity. Hydrogen without a first shell in 
V, Nb and Ta gives po values intermediate between the above-mentioned extremes. 
Except forHinCuand Ag, theinclusionof thefirstshellisanabsolutenecessityinorder 
to obtain values comparable with measured data. Hydrogen/deuterium isotope effects 
on the basis of a difference in zero-point motion are not to be expected in Pd, V ,  Nb and 
Ta, which is in agreement with experiment. 

Huge contributions due to the back-scattering by the AI crystal were detected in 
AI(H). This explains the large difference between, on the one hand, results obtained 
from the Friedel expression or from finite cluster calculations and, on the other hand, 
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residual resistivities obtained in the real Al lattice. Such strong effects were not found 
in Cu(H), Ag(H) and the Substitutional A1 alloys. 

An ever returning point of discussion is the choice of the MT radii for the host and 
interstitial atoms. One might argue that for each system there exists an optimum ratio 
R s / R h  at which experiment and theory match. Such a ratio indeed can be found for 
the Cu(H) system but for Pd(H), at the experimental lattice distortion (-1%). the 
existence of such a ratio in the present MT model is highly questionable. Therefore 
a more uniform approach was selected. For interstitial impurities in FCC metals the 
prescription of Switendick [51] was followed (R&'/R" = 1.86). For interstitials in Bcc 
metals a different ratio of 1.5 was used. All MT radii obtained in this manner have in 
common that the interstitial MT radius lies between 1.20 and 1.40 Bohr. In this way the 
interstitial mspheres do justice to the maximum in the radial charge distribution of the 
hydrogen atom in its ground state. Such a maximum corresponds to a more or less 
localized state, which has been found in several metal-hydrogen systems [52,53]. 

Touching host MT spheres always have the disadvantage that they do not allow for 
lattice deformation. In  many systems lattice deformation is present around the defect 
and it can influence the residual resistivity considerably. The R%/R', ratios used 
throughout this paper make it possible to account for these effects. 

In the substitutional FCC metal-impurity systems investigated in this work the 
description using a MT radius of 0.32% led to good results in Cu(Ag), Cu(vac) and 
AI(Cu). For Ag(Sb), Al(V) and AI(Ni) qualitative agreement is obtained while non- 
self-consistent Rh in Cu is problematic. Lattice distortion is only important in Pd having 
alarge d-like DOS at eF. In most cases the inclusion of a first shell of perturbed host atoms 
did improve the p o  values, but not to such an extent that discrepancies between theory 
and experiment disappeared. Increase of the host MT radius to0.354~ (touchingspheres) 
leads to less satisfactory values for po. Touching spheres might overestimate the part of 
thecrystal potential that can be approximated safely by aspherically averaged potential, 
but the precise cause is not clear. 

In the BCC metal Nb the substitution of a vacancy or an Fe atom gives a large residual 
resistivity while for Ta or Cr, roughly speaking, p, is a factor of 10 smaller. In a sense 
this reflects the diffexences in the number of valence electrons (U) which are -5, f 3 ,  
0 and +1 for a vacancy, Fe, Ta and Cr respectively. The influence of lattice distortion in 
Nb can be considerable (Nb(Ta)). 

It is found that the residual resistivity due to an impurity-vacancy pair can be 
estimated by summing the single-site values forp, of the individual scatterers. However, 
if both the impurity and the vacancy are strong scatterers, multiple scattering effects can 
be large. In Nb(Fe, vac) a reduction was found amounting to 30%. 

Fulfilment of the Friedel sum rule in substitutional alloys was obtained by shifting 
all MT potentials in the impurity cluster by the same constant potential. This choice is 
expected to give reliable results in those cases where charge transfer to or from the first 
shell is reasonably approximated in constructing the alloy potential by overlapping 
atomiccharge densities. Inallowing for different shiftsfor the impurityand the first shell 
one introduces a degree of freedom. This degree of freedom could then be used to 
simulate large flows of charge in the impurity cluster. Test calculations showed that the 
results for Cu(Rh) can be improved in this way starting from either of the two Rh 
configurations. In the present work such manipulations were avoided. Precise infor- 
mation on these charge flows should come from a self-consistent approach. The poten- 
tials constructed from atomic charge densities in combination with a single constant 
energy shift for all perturbed transition-metal atoms clearly give good resultsin situations 
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where the defect has a relatively simple electronic structure. Interstitial hydrogen is an 
example of such a defect as well as the substitutional systems Cu(Ag) and AI(Cu). In 
cases where impurity d electrons are to be redistributed in virtual bound states around 
the Fermi energy, calculated residual resistivities show larger deviations from the exper- 
imental data. Nevertheless in some cases reasonable results can be obtained (e.g. 
Nb(Ta)). 

J van Ek and A Lodder 

Acknowledgment 

The authors wish to thank Dr R Zeller for providing the phase shifts, pertaining to self- 
consistently calculated Cu(Rh), which were used in this work. 

References 

[I] LodderA,MerligI,ZellerR.MrosanE and DederichsPH 1986Phys. SrorusSolidib 135831 
[Z] Volkl J and Alefeld G 1974 Diffusion in Solids: Recenr Developments (New York: Academic Press) 
131 Nakajima H, Yoshioka M and Koiwa M 1987 Acra Meroll. 35 2731 
[4] Brouwer R ,  Douwes H, Gricssen R and Walker E 1987 Phys. Rev. Lerr. 582551 
[5] ColeridgePT 19721. Phys. F; Mer. Phys. 2 1016 
[61 Mertig 1. Mrosan E, Zeller R. Dedericha P Hand Ziesche P 1983 Phys. Srarus Solidi b I17 335 
[7] MerrigI.MrozanE.ZellerRandDcderichrPH 1983 Phys. SlaruESolidib 117619 
181 Mertig I ,  Mrosan E. Zeller R and Dederichs P H 1983 Phys. Storus Solidi b 119 251 
[9] Braspenning P J ,  Zeller R, Lodder A and Dederichs P H 1984 Phys. Reo. B 29 703 

[IO] de Ruiter J C C, Lodder A and Ouelle G 1989 Physica B I54 140 
[I11 van Ek J and Lodder A 1990 Phys. Lefr. A 144379 
[I21 Sondheimer E H 1962 Proc. R. Soc. A 268 100 
1131 van Ek J and Lodder A 1991 1. Phys.: Condens. Marrer 3 7307 
[14] vanEkJ andLodderA 19911. Phys.:Condens .&faller37331 
[lq Kubo R 1957J. Phys. Soc. h p a n  12 570 
[I61 Oppeneer P M and Lodder A 1987 J .  Phys. F: Mer. Phys, 17 1885 
[17] Oppcneer P M and Lodder A 1987 J. Phys. F: Mel. Phys. 17 1901 
[l8] van Ek J and Lodder A 1991 J .  Phys.: Condens Malrer 3 at press 
[19] Ziman J h.I 1972 Principles ofrhe Theory ofSolids (Cambridge: Cambridge University Press) 
[ZO] Desclaux J P, Moser C M m d  Verhaegen G 1971 1. Phys. 8: Al. MO/. Phys. 4296 
1211 Lehmann G 1975 Phys. Srarus Solidi b 70 731 
1221 Lasseter R H and Sown P 1973 Phys. Reo. B 8 2476 
[U] van Ek I and Lodder A 1990 Solid Srafe Commua. 73  373 
[24] Oppeneer P M and Lodder A 1985 1. Phys. F: Met. Phys. 15 LI 15 
1251 Huirman Land Weiss J A 1975 Solid Stare Commun. 16 983 
[%I Wampler W R and Lengrler B 1977 Phys. Rev. B 15 4614 
[U] Papastaikoudis C. Lengeler B and Jiger W 1983 1. Phys. F: Mer. Phys. 13 2257 
1281 Friedel J 1958 Nuouo Cim. Suppl. 7 287 
[29] Moruui V L, Janak J F and Williams A R 1978 Calcalared Elmronic Properties of .Ueials (Oxford: 

1301 Peisl H 1978 Topics in Applied Physics vol 29 Hydrogen in Melds l (Berlin: Springer) 
[31] Cadcville M and Lernrr C 1976 Phil. Mag. 33 801 
[32] Bakker H L M, de long M J C. Griessen R, Oppeneer P M. Lodder A, Vis R D and Brodowsky H 1986 

[33] Puska M J and Nieminen R M 1984 P h p  Reo. B 29 5382 
[34] Lodder A and Braspenning P J 1980 J. Phys. F: Mer. Phys. 10 2259 
I351 Springer T I978 Topics in Applied Physics vol 29 Hydrogen in Metah I (Berlin: Springer) 
1361 Wesllake D G and OckersST 1973 Meroll. Tram. 4 1355 
[37] Maier Wand Wipf H 1977 Scr. Merdl. I1 695 

Pergamon) 

J .  Phys. F: Mer. Phys. 16707 

~~ ~ ~~ 



Residual resistivity in transition metals 7381 

1381 Peterson D Tand Jensen C L 1973 MeIaN. T T ( I ~ .  A 9 1673 
1391 Watanabe K and Fukai Y I980 1. Phys. F: Mer. Phys. 10 1795 
[a] Pryde J A and Tsong I S  T 1971 ACIQ MeraN. 19 1333 
1411 Behr H, Keppler H M, Streyer G, Metzger H and Peisl J 1983 J. Phys. F: Mei. Phys. 13 L29 
14’21 B&ker H L M. Feenstra R. Griessen R, Huisman L M and Venema W J 1982 Phys. Reo. B 26 5321 
1431 Bakker H L M, van Sprang M and Griessen R 1985 1. Phyr. F: Mer. Phys. 15 63 
1441 Bakker H L M, Griessen R, Koeman N J ,  Albers P and Sicking G I986 J. Phys. F: Mer. Phys. 16 721 
1451 Oppeneer P M, Lodder A and Griessen R 1988 J. Phys. F: Mer. Phys. 18 1743 
(461 Julianus J A, Myers A, Bekker F F. van der Mare1 D and Allen E F 1985 J, Phys. F: Ma. Phys. 15 11 1 
(471 Lmdulr-Bomslein 1982 New Series, voI15a (Berlin: Springer) 
[48] Gupta R P. Serruys Y, Brebec G and Adda Y 1983 Phys. Reo. B 27 672 
1491 Brand M G E and Lodder A 1986 Phys. Slalus Solidi b 133 119 
[SO] Mrosan E and Lehmann G 1976 Phys. SIQIUS Solidi b 78 159 
[51] Switendick A C 1972 Ber. Bumenges.  Phys. Chem. 16 535 
1521 Khalifeh J 1982 PhD Thesis Universite Louis Pasteur, Strasbourg 
1531 Mokrani A 1988 PhD Thesis Universit6 Louis Pasteur, Strasbourg 


