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Abstract. Residual resistivities for interstitial H in the face-centred cubic metals Cu, Ag, Ni,
Pd and Al as well as in the body-centred cubic metals V, Nb and Ta are calculated using
the Korringa-Kohn-Rosteker Green function description of Bloch electron scattering by
impurity clusters. Heavier interstitials like B and C in Pd and C and O in Nb are also
investigated. Inclusion of environmental effects, especially local lattice deformation of the
first shell of surrounding atoms, turned out to be of crucial importance in order to obtain
agreement with experimentai residual resistivities. The firmly established absence of a H/D
isotope effect in Pd, V, Nb and Ta can be explained. Measured residual resistivities due to
substitutional impurities in Cu, Ag, Pd, Al and Nb are reproduced with varving success,
depending on the complexity of the electronic structure of the defect potential. A first shell
of surrounding metal atoms improves the calculated results, while lattice distortion is not as
important as it is for the interstitial alloys.

1. Introduction

The resistivity change per atomic per cent of an impurity in a metal, Ap, can be measured
accurately, Absolute experimental errors are usually within 0.1 uQ em/at. %, while
the resistivity changes themselves vary from 0.1 uQ ¢m/at.% to values larger than
10 4Q cm/at. % for substitutional impurities like Cr and Zr in Cu [1]. Well established
values for Ap can, for instance, be used to obtain (time-dependent)} impurity con-
centration profiles along a sample [2—4]. Int such experiments, where the formation and
the relaxation of a concentration gradient yields information on the diffusion coefficient
and possibly on the electromigration effective valence of impurities in the metal, the
temperature is finite. At zero temperature the resistivity change per atomic per cent in
dilute metal-impurity systems is termed the residual resistivity and is denoted by p,,.
At temperatures where the coupling of lattice vibrations to oscillating impurities
is negligible, the residual resistivity turned out to be accessible by theoretical and
computational means. Once the characteristics of the electron—impurity scattering are
available in terms of a vector fieid of mean free paths over the Fermi surface, pp can
readily be calculated. Coleridge [5] studied the scattering of electrons by Ni, Fe and Al
in Cu. In a series of paper Mertig et al [6-8] applied the Korringa-Kohn-Rostoker (KKR)
Green function method to the description of substitutional-impurity scattering in metals
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and used it to describe the electronic structure of Cu(X) where X stands for a wide
variety of impurity elements. The calculated results for fourth-row impurities in Cu are
in good agreement with experimental data while the results for fifth-row impurities in
some cases deviate strongly from measured data.

The calculations mentioned above included d-partial-wave scattering but did not
account for charge-transfer effects and local lattice distortion. An attempt to estimate
the influence of such effects on residual resistivities in Cu and Ag has been made via a
finite cluster model [1]. It turned out that even the inclusion of lattice distortion and
charge transfer, the latter being present in the self-consistent potentials [9] used, is not
to be expected to yield large improvement. In general the finite cluster resistivities
agreed with experiment as well as or, in some cases, even better than the ones including
the host band structure. De Ruiter ef al [10] showed in a pseudopotential study of
substitutional impurities in In that long-range strain fields around defects influence pg
to some extent.

Recently a computer program able to treat interstitial impurities with one or two
surrounding shells in FCC metals has become available [11]. In order to account properly
for lattice distortion, angular momenta up to/ = 3 had to be included. A direct solution
of the set of algebraic equations, derivable from the Boltzmann transport equation,
according to Sondheimer [12] had to be replaced by an iterative procedure to solve the
Boltzmann equation. Unfortunately an incorrect factor for the conversion from atomic
units to #Q cm/at. % meant that all results in [11] should be multiplied by a factor of 2,

In this paper the KkR Green function method will be employed to calculate residual
resistivities for interstitial and substitutional impurities in FCC and BCC metals. Both the
effect of local lattice deformation as well as charge transfer in the impurity cluster are
accounted for in the calculations to be presented in this paper. The results will be
compared with available experimental data. From this comparison it should be possible
to judge the quality of the muffin-tin (MT) potential describing the defect electronic
structure. Because of the relative accuracy of the experimentally available resistivity
changes it can be stated that, when theory and experiment match, the electron—impurity
scattering in the system is described satisfactorily.

In section 2 the expressions resulting from the application of the KKR Green function
formatism to the Boltzmann equation for electron transport wili be presented. Insection
3 the potentials used for the various systems will be discussed briefly. Sections 4 to 7
present results obtained for various FCC and BCC metals with both interstitial and
substitutional impurities. For clarity we remark that the main guidance in choosing the
systems was their occurrence in the research on electromigration as described in {13]
and[14]. Insection § the results will be discussed and several conclusions are formulated.

Atomic units such that £ = 2m = 1, m being the electron rest mass, are used. Asa
consequence e = 2, where e = e} is the elementary charge.

2. Expression for the vector mean free path

The problem of the conductivity of an electron gas containing randomly distributed
impurities at a low density can be treated within Kubo’s linear response formalism [15].
The resulting conductivity o to lowest order in the impurity concentration equals the
conductivity obtained in solving the linearized Boltzmann equation. In a real metal-
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impurity system one seeks the solution g, of the linearized Boltzmann equation for
elastic scattering

e (af;(:iik)) v, E= % Pugr — 8u). O

The function g, denotes the deviation from the equilibrium distribution function fy(g;).
Py, gives the transition probability per unit time for an electron beingscattered elastically
from Bloch state |k) = |nk) into k') = |n'k’) at energy &, = & In (1) v, denotes the
group velocity of an electron in state |k).

When g, is assumed to be linear in the external electric field E, it obtains the form

g = e(3fo(er )/ )Ay - E (2)
with 3f, /& = —8(e — ) at T = 0. Equation (1) can then be written as
Ay =1} (Uk +2 Pkk’Ak‘) (3}
m

and has to be solved for the vector field A,, termed the vector mean free path, The
electron—impurity lifetime 7} is given by

1 .
= E Py = —2cIm Ty 4)

The second equality in (4) is the optical theorem connecting diagonal elements of the
transition matrix, Ty, to a sum over all transition probability rates for scattering out of
state k). The transition probability per unit time for a low impurity fraction c of the total
number of atoms N is given by

Py = 27cN | Ty |2 8(es — £40)- )

The current density in the metal sample (volume Q) is given by the volume averaged
sum over all contributions —ew, of electrons in states | k) weighted by the deviation from
equilibrium

.2 2e?

j=5 2 gy =5 2 (v X Ay) 8lex — &)E. ®)
Q7 Q7

Comparing withj = ¢E = p~'E and converting the summation into an integration over

the Fermi surface gives

-1 —
o (W f dS, 5, X Ay ™)
with 8, = p,/v;.

Within the kKkr Green function formalism the r-matrix elements for electron—
impurity scattering can be expressed as

Ty = 2 Cor(R)T L A ppmrrr Coopr(K'). (8)

i
The wavefunction coefficients C,, (k) are labelled by an index n numbering the atoms in
the impurity cluster and by L = (/, m;), a combined angular momentum index. These
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coefficients as well as the back-scattering matrix A are discussed in great detail elsewhere
[16-18]. The cluster t-matrix with elements (k = V &r)

Thp = — (/) oo (—A;) sin{77}F — nf) expli(n? — n7)l 9)

contains the phaseshifts for the MT potentials in the impurity cluster in the present
(77) and in absence (n}) of the impurity. Lattice distortion at site n is accounted for
through the matrix J(A,) with A, a small displacement vector. The matrix elements of
J(A) are given in terms of Gaunt coefficients C;;+;-, spherical Bessel functions j{xA)
and real spherical harmonics Y, (A)

Tor(A) = 4mil=" 21 Cypppjp(kA)Y 1 (A). (10)

The kernel in the integral equation (3) for the mean free path is degenerate. This can
be made explicit upon substitution of equation (8) in (5)

Py = 27N ~ 8(g; = €4) EL Co(R)Cr (0 (KVQEL (k) (11)
n'L’

with

Qe (k) = 2 Thur 2t Apvori: Corr- (). (12)

Microscopic reversibility demanding that Py, = P, can be demonstrated through care-
ful rearrangement of factors in (11) combined with (12). The equation for the vector
mean free path can be rewritten as

Ax =2 (04 + 220N D Lppri Qe 0923 0)). (13)
nqﬁ'
The vectorial matrix I is an integral over the Fermi surface with matrix elements [11]

1 dSk :
i = g | SECR A ) (14)

which shows that, apart from the vector mean free path, the integrand is composed of
host wavefunction coefficients. The volume of the Brillouin zone is denoted by Vg and
equals 4 or 2 in units of (2r/a)?, a being the lattice constant, for FCC and BCC metals
respectively,

Computer programs to calculate the residual resistivity of interstitial impurities at
the octahedral and tetrahedral sites in FCC metals, the tetragonally distorted tetrahedral
site in BCC metals and of substitutional impurities in FcC and BCC metals, have been
designed. The Ziman approximation for the vector mean free path [19]

ds -
AZlman =0, (VBZJ __k_(l — By - Dy )Pkk) (15)

is used as a starting point in the iterative solution of the Boltzmann equation. Again,
integrals of the type (14) have to be calculated but now with A, replaced by §,. The
Q.. (k) in equation (12) can be calculated once and for all, given a metal-impurity system
and a mesh of k-points over the Fermi surface. Manipulations such as the numerical
integration over the Fermi surface and the multiplication of numerous A-dependent
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matrices are well suited for treatment by the vector processor of the Cyber 995E
computer used in the present investigations.

With the vector mean free path in the Ziman approximation as an initial guess,
convergence of the mean free path in a sense that

AT — Al }

where two subsequent iterations are numbered by / and { + 1, was attained in typically
4-1Qiterations. At this point the residual resistivity had always converged to an accuracy
better than the smallest experimental error (~0.05 uQ cm/at.%). The differences
between the Ziman approximation and the converged results for the residual resistivity
are generally found to be small, as already noticed by Coleridge [5].

The optical theorem (equation (4)) was fulfilled exactly for embedded impurity
clusters when lattice distortion is absent. This shows that the integrations over the Fermi
surface are performed with great accuracy. When lattice distortion was admitted, the
root-mean-square deviation from the optical theorem

{ [(Vazf EiEk_Pkk /(—-Zr.'lm Tkk)) “1]2/% 1}1/2 (17)

mesh mesh

was of order 1077 to 10~* depending on lattice distortion. This small deviation can be
understood from the different occurrence of the matrix J(A) in the two factors of (17).
This matrix accounts for lattice distortion through an expansion in terms of Bessel
functions. A possible truncation error in this expansion due to the angular momentum
cut-off at / = 3 is quadratically present in Py while in —2c¢ Im T}, it occurs linearly.

3. Potentials

Among the MT potentials describing the metal-impurity systems in this study are those
used in calculating the electromigration wind valence in [13] and [14]. In addition
potentials with a smaller MT radius of the host metal atoms (and thus a larger radius for
the interstitial) are used for some FCC metals containing interstitial impurities. A detailed
description of the construction of the MT potentials has been given elsewhere [13, 17].
Hereitisonly mentioned that the host potentials are constructed starting from relativistic
atomic charge densities, obtained from a Hartree—Fock-Dirac—Slater calculation [20]
on atoms with a given electronic configuration.

Impurity potentials, constructed in a similar way, are made to satisfy a generalized
Friedel sum rule [17, 21], which assures that the total electronic charge difference due
to the impurity is accounted for. This is accomplished through a procedure whereby the
MT potentials are shifted by a small constant potential up or down the energy scale. Such
an energy shift slightly alters the scattering properties of a MT potential. Resulting
changes in the charge density around the MT potential are usually interpreted as a change
in the amount of screening associated with the potential [22]. In the interstitial systems
the Mt radii of the host and the interstitial atoms correspond to an interstitial MT sphere
touching the atoms in the first surrounding shell. Fulfilment of the Friedel sum rule in
these cases was obtained by shifting only the potentials of the first-shell atoms, all with
the same amount of energy. The interstitial potential itself was always left unaltered.
On the one hand, it is unphysical to accommodate large amounts of screening charge
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Table 1, Residual resistivities in 2@ cm/at. % for intersfitial impurities H, B and C at the
octahedral site in Fce metals. Column 2 shows calculated values for a single interstitial in a
perfect host. Columns 3 to 9 display calculated o, values as a function of the lattice deform-
ation A, as a percentage of a, of the first shell. The last two columns show available
experimental information.

Pa Experimental
System Imp only 0% 0.5% 1% 15% 2% 2.5% 3% po  A(%)
Cu(H) 1.68 180 1.83 186 190 195 150
2.66 271 276 281 2.87 294 302 3.09
Ag(H) 211 211 215 219 224 2.30 1.34
Ni(H) 0001 054 0.60 075 0.8 1.06 0.67
Pd(H) 0.001 030 D39 052 068 0.8 032 1.0
0002 022 035 054 08 105
PAB)  0.03 155 178 191 208 226 245 205 27
0.10 2.48 2.83 343 372 4.0
PA(C) 0.07 1.77 203 232 258 286 321 27,38 20
0.26 3.14 338 379 304 4.07
AI(H)  0.05 0.09 008 008 008 008

Table 2. Calculated residual resistivities in 2$2 cm/at. % for interstitial H at the tetrahedral
site of FcC metals. Column 2 shows calculated values for a single interstitial in a perfect host.
Columns 3 to 6 display calculated p, values as a function of the lattice deformation of the
first shell.

T T s an 0 oebdn o s i

[}
System Imp. only 0% 1% 2% 3% l‘
Cu(H) 085 097 L2 10T L4 R
AglH) 132 157 165 17 1R
PA(H) 0013 026 038 056 091

Al(H} 0.07 0.13 0.11 0.1 0.12

T TTRTEAT R fey 1 e R

on the interstitial by shifting its potential rigidly by a Jarge constant energy while, on the
other hand, in test calculations the Friedel sum was found to be rather insensitive to the
shift applied to interstitial hydrogen.

The strategy for shifting the potentials of the substitutional systems essentially
amounts to using a single constant energy shift for all the atoms in the impurity cluster.

4. Results for interstitials in rcc metals

inequality (16), for several metal—impurity systems. These tables deal with impurities at
the octahedral and at the tetrahedral site respectively. In these tables the first column
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Table 3. Lattice constant @ and the interstitial MT radii at the octahedral and tetrabedral
(Rir) sites pertaining to the host MT radius {R}I%') are given in Bohr. The Fermi energies ¢
corresponding to the different R} are in Ryd.

Ry
Metal a R Octahedral ~ Tetrahedral &
Cu 6.831 2.415 1.003 0.543 0.584
2.220 1.195 0.738 0.634
2.049 1.366 0.909 0.627
Cusce 6.76 2.39 0.630
Ag 7.722 2.730 1.351 0.834 0.527
Ni 6.694 2,176 1.171 0.723 0.649
Pd 7.351 2,389 - 1.286 0.794 0.515
2.205 1.470 0.978 0.577
Al 7.623 2.478 1.334 0.823 0.626
v 3.713 1,916 0,941 1.278 0.782
Nb 6.238 2.441 0.729
2.092 1.027 1.395 0.832
Ta 6.238 2.092 1.027 1.395 0.927

of p, values shows the outcome from a calculation neglecting charge transfer to and
lattice distortion of the first shell of surrounding atoms. In this case the Friedel sum rule
is not satisfied, for the interstitial impurity potential was always left unshifted [13, 23].
The subsequent columns show pg as a function of the radial outward deformation of the
first shell of perturbed host atoms. The Friedel sum rule was made to equal the number
of valence electrons of the impurity by applying a constant energy shift to the MT
potentials in the first shell. The last two columns give experimental data, if available.
Whenever there are two lines of resistivities present, the first line corresponds with the
description utilizing a larger MT sphere for the host. The second line corresponds with a
somewhat smaller host-MT radius but a consequently larger MT radius for the interstitial.
Table 3 summarizes the different MT radii for the host and for the interstitial along with
Fermi energies and lattice constants,

In the interstice in FCC metals the two sites with highest point-group symmetry are
the octahedral (point group Oy) and the tetrahedral (Ty) positions. Commonly the
octahedral site surrounded by a first shell of six metal atoms is believed to be the
equilibrium position for small interstitials. The second shell of eight atoms around the
octahedral site was shown to be of only minor influence on the residual resistivity
f11] and therefore will not be considered. The tetrahedral site is surrounded by four
equivalent metal atoms.

4.1. Cu(H)and Ag(H)

It is seen in Cu and Ag that the addition of a first shell of host atoms, with or without
lattice distortion, does not influence the hydrogen residual resistivity much. This means
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that the electrons in Cu and Ag are most strongly scattered by the impurity itself, its
surrounding being not too important. This was noted earlier from a comparison of the
influence of the first shell on de Haas—van Alphen (dHvA) scattering quantities in Cu(H)
and Pd(H) [24]. In Pd the electron~impurity scattering could only be calculated correctly
upon explicit inclusion of the first shell while in Cu a (single site) average t-matrix
approximation already gave reasonable results [25]. Enlargement of the MT sphere of
the octahedral hydrogen atom in Cu from 1.195 to 1.366 Bohr, thereby decreasing the
host MT radius, resulted in overall larger values for gy by a factor of approximately 1.5
(see table 1}. This is in agreement with the above-mentioned behaviour because a larger
interstitial implies a stronger scatterer. The smaller interstitial MT radius, corresponding
to 0.175a, resulted in py values still exceeding the experimental result [26] gy =
1.50 uQ cm/at.%. At the tetrahedral site in Cu the resisitivity is again smaller simply
because of the smaller MT radius for the proton. A host MT radius corresponding fo
touching spheres resulted in values of 1.20and 1.34 42 cm/at. % for the single hydrogen
and the complete impurity cluster respectively. In this case there is no possibility to
account for lattice distortion. The sensitivity to the choice of the MT radii is observed for
other systems as well and will be returned to in the concluding section.

In Ag an interstitial MT radius of 0.175a at the octahedral site leads to values much
larger than the measured value [27]. At the tetrahedral site a calculation including the
first shell does give resistivities in better agreement with experiment. In a previous
publication [11] this site was ruled out as a possible equilibrium position for hydrogen
or deuterium in Ag. This conclusion was founded on erroneous results and has to be
rejected.

From the results for Cu(H) and Ag(H) it is learned that a hydrogen atom in these
metals constitues a very strong scatterer, regardless of the precise environmental details.
It is as if the Cu and Ag lattices could be replaced by a jellium with the correct Fermi
energy, stillimposing bounds on the MT radius of the impurity via their lattice constants.
The actual free-electron values of p; can be obtained from the famous expression of
Friedel [28]

4 . _
po = W?_U + 1) sin® (1., = 77) (18)
where Z, is the host valence (i.e. 1 for Cu and Ag) and #/ are the same hydrogen phase
shifts as used in table 1 (R{;r = 0.175a). One then finds the values 2.98 uQ cm/at.% and
3.54 uQ cm/at. % for Cu(H) and Ag(H) respectively.

4.2. Ni(H), Pd(H), Pd(B) and Pd(C)

The residual resistivity in Ni(H) was measured at 4.2 K [27] where Ni is in its ferro-
magnetic phase (T = 627 K). In this work Ni is treated as a paramagnetic metal and it
is therefore interesting that the calculated pg agrees so well with experiment at about
0.75% lattice distortion. This can be understood from the fact that at the Fermi energy
the density of states (Dos) for the minority spin is much greater than that of the majority
spin. The pos and the dispersion relation of paramagnetic Ni and of the minority spin
in ferromagnetic Ni are much alike [29]. If the electron-impurity scattering is assumed
to be spin-independent, it is then not completely surprising that a paramagnetic Ni host
gives a good description.

Both in Ni(H) and in Pd(H) the influence of the perturbed surrounding atoms is
astonishing (see table 1). Lattice distortions are deduced from relative volume changes
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per unit concentration [30]. At 1% lattice distortion the residual resistivity is increased
by factors of 750 and 520 respectively (Risr = 0.175a). The residual resistivity due to
the hydrogen alone is negligible! As a consequence a larger MT radius (Rf;r = 0.2a) for
H in Pd does not alter the results as much as was the case for the Cu(H) system. At a
lattice distortion of about 1% the difierence vanishes. In Pd(H) agreement with the
measured resistivity is reached between 0% and 0.5% lattice distortion for the smaller
as well as for the larger mMT radius.

At the tetrahedral site (see table 2) in Pd hydrogen constitutes a stronger scatterer.
Theresistivity due to the hydrogen alone isa factor of 13 larger than that at the octahedral
site, in spite of its smaller MT radius (see table 3). Total cluster values, however, are
smaller.

Heavier impurities in Pd, such as B and C, again are weak scatterers by themselves.
Only inclusion of the first sheli surrounding the octahedral site makes that the calculated
Py become comparable with experimental results. For Pd(B) the smaller interstitial MT
radius clearly gives the best agreement with experiment. At 2% lattice distortion, which
is below the experimental value [17] of 2.7%, the measured results of Cadeville and
Lerner [31] are reproduced. An amusing situation exists for Pd(C). At 2% lattice
distortion [17] the experimental residual resistivity of Cadeville and Lerner [31] com-
pares nicely with the value obtained in using the smaller inierstitial MT radivs. The result
of Bakker eraf[32] isin fine agreement with a spatially more extended carbon potential,
at the same lattice distortion.

4.3. Al{H)

Neither the residual resistivity nor the lattice deformation due to the proton in Al are
known. Effective-medium calculations for AI(H) by Puska and Nieminen [33] indicate
a lattice distortion of the first shell of approximately 1.6% at the octahedral site and
3.4% at the tetrahedral site.

Fromtables 1 and 2 itisseen that lattice distortion does notinfluence pyin asystematic
way. Inclusion of the first shell enhances the residual resistivity by a factor of almost 2
with respect to hydrogen alone. Compared with the other resistivities (first shell
included) in tables 1 and 2, p, is small (0.08 to 0.13 uQ cm/at.%).

Thislow resistivity increase is surprising, for Alis a trivalent simple metal. One might
expect formula (18) to give a resuit comparable with the above-mentioned values. This
is not the case at all. The Friedel expression for py gives 1.02 uQ cm/at. %.

In search of an explanation for this unexpectedly low residual resistivity additional
finite cluster calculations [34] have been performed. In such a calculation the impurity
cluster consists of the same cluster potential as was used in the real-metal calculation.
The crystal potential, however, has been repiaced by a constant potential, the MT zero
of the host metal. One then finds a resistivity of p, = 0.64 uQ cm/at.% at 0% lattice
distortion. Replacement of the frst-shell atoms by Al host atoms leads to pg=
0.66u%Q cm/at. %, which is to be compared with the impurity-only result for Al(H) in
table 1. These values still differ appreciably from those given in table 1.

From a comparison of the host wavefunction around the interstitial site

W, (x+Ry) = EL: Cp(k)f(x) (19)

with the well known plane-wave expansion

el (R = 4ei R DY, (), (x) (20)
L
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one finds that for free-electron metals it holds that
Cpk)y= (4::/9.1/2) ik R i’Y,_(IE). (21)

Here x is a coordinate centred around the interstitial site R; and Q is the unit-cell volume,
The spherical wave j, (x} is the product of a real spherical harmonic ¥, (#) and a spherical
Bessel function j;(V ggx). In Al equation (21) was obeyed quite well over large parts of
the Fermi surface when compared with Cu, Ag and especially with the situation in Pd.
in this way complete failure of the free-electron approximation in the interstitial region
in Al could be ruled out.

The ultimate cause of the low gy value for the Al(H) system was found in the
remarkably strong influence of back-scattering by the Al crystal. To this end the A-
matrix describing the effect of back-scattering [17, 18] was set equal to 1, the unit
matrix. This means that all multiple scattering effects in electron impurity scattering
are neglected. Residual resistivity calculations in AI(H) with A = ¥ resulted in p, =
0.49 uQ cm/at.% for the impurity cluster at 0% lattice deformation. This value is a
factor of 5.44 larger than the corresponding value in table 1. In Cu(H) and Ag{H) p,
increased by factors of only 1.12 and 1.35 upon taking A = 1. The fact that in the finite
cluster calculations on Al(H) relatively large values of p, were also found demonstrates
that the octahedral seven-atom cluster embedded in a constant potential does not
provide an adequate description of the back-scattering by the whole Al crystal.

In advance of section 7 it can be stated that for substitutional impurities, e.g. Cu
in Al, the importance of back-scattering is less pronounced than it is for interstitial

.impurities. The Friedel expression, with differences of host and impurity phase shifts
instead of just the impurity phase shifts, gives py = 0.34 uQ cm/at. %. A calculation in
an Al crystal with A = 1 gives p, = 0.68 uQ cm/at.%. Correctly accounting for back-
scattering between the Cu impurity atom and the otherwise perfect Al lattice gives gy =
0.93 uQ cm/at. %.

5. Results for interstitials in scc metals

Only the tetrahedral site { point group D,,) will be considered, for this is known to be
the equilibrium position for hydrogen atoms in V, Nb and Ta [2, 35]. Although larger
atoms like C and O are presumably located at the octahedral site (D,,) they will also be
placed at the tetrahedral site in the present work, in order to get an impression of py. A
first shell of four equivalent atoms surrounds the tetrahedral site.

Owing to the lower symmetry of these systems when compared to impurities in Fcc
metals, the required computer time for the evaluation of the Fermi surface integrals in
equation (14) increased significantly. Whereas for an octahedral impurity in an FCC
metal the integrations could be resiricted to the irreducible 1/48th part of the Fermi
surface, in BCC systems the integrations had to be extended to 6/48th part.

An interstitial at a specific tetrahedral site results in a diagonal 3 x 3 resistivity
tensor with, for instance, (0g).. # (00)yy = (00).- Each host atom in the BCC lattice is
surrounded by a collection of 24 tetrahedral sites reflecting the cubic symmetry of the
host metal. Averaging over all possible impurity orientations, i.e. over these 24 sites,
results in p, = dtrpy.

Al experimental data for H in V [36-39], Nb [37-39] and Ta [37. 39, 40] have been
obtained at definitely non-zero temperatures. The resistivity due to hydrogen turned
out to depend only very weakly on temperature in the range 390 to 940 K [39]. So, if one
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Table 4. Residual resistivities in pQ cm/at, % for interstitial H, C and O at the tetrahedral
site in BCC metals. Column 2 shows calculated values for asingle interstitial in a perfect host,
Columns 3 to 8 display calculated p, values as a function of the lattice deformation of the
first shell. The last two columns show available experimental information.

Bo Experimental
System Imp.only 0% 1% 2% 3% 4% 5% Ap A (%)
V(H) 0.26 037 047 074 111 157 211 0.851.12 43
Nb(H) (.22 034 046 072 107 152 208 063068 3.0
Nb{(C) 2.58 35
Nb(QO) 3.36 3.69
Ta(H) 0.13 0.16 029 055 094 147 209 071092 25

compares calculated p, values with experimental resistivity changes Ap, the validity of
Mathiessen’s rule is implicitly assumed. The experimental lattice distortions in table 4
have been taken from a paper by Behr er af [41].

5.1. V(H), Nb(H} and Ta(H)

The single hydrogen in a perfect vanadium lattice causes an already considerable res-
istivity (see table 4). When the first shell is accounted for in the calculation, a marked
dependence on lattice distortion is observed. The range of experimental Ap values
falls between 2% and 3% lattice distortion, which is more than 1% lower than the
experimental value of 4.2%.

Both in V(H) and in Nb(H) inclusion of the first shell with 3% lattice distortion
enhances the resistivity by a factor of about 4.5. In Nb the experimental Ap values are
reproduced at about 2% lattice distortion, which again is 1% below the experimental
value of 3%. It is noted that the residunal resistivity of hydrogen in V and Nb behaves
almost the same as a function of lattice deformation, although the lattice constants of
the two metals are different (see table 4}, This means that it can be considered as justified
toconclude that the experimentally found difference in Ap is a consequence of a different
lattice deformation around the hydrogen atom.

For Ta(H) the situation is different. Here the hydrogen atom alone leads to a residual
resistivity that is approximately half of that in V and Nb. Addition of the first shell and
accounting for 2% to 3% lattice distortion and for charge transfer from the hydrogen
atom to the surrounding atoms results in p, values that compare well with the exper-
imental Ap range for Ta(H) in table 4. This local deformation of the lattice is in
agreement with the experimental value of Behr et al [41]. At higher percentages lattice
distortion pyapproaches the values foundin V and Nb. This illustrates the large influence
of local lattice distortion in these 8CC metal/hydrogen systems. The contribution to
0o from the hydrogen and the accompanying charge transfer to its sutroundings is
overshadowed by the increase in cross section due to the lattice distortion caused by the
proton,

In addition the residual resistivity of tetrahedral C and O in Nb was calculated. No
experimental data are available. From table 4 it is seen that these impurities alone give
a considerable change in resistivity when compared with H. If the first shell is included
(3.5% lattice distortion) the p, values increase by a factor of 1.4 and 1.1 for C and O
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respectively. This contrasts with the much larger factor of approximately 5 for hydrogen.
Carbon and oxygen behave more or less like a real single-site point defect while the
effect of interstitial hydrogen on the electronic structure of Nb largely proceeds via the
first shell. ' )

6. Hydrogen/deuterium isotope effect

The absence of a significant isotope effect in py for hydrogen in Pd [32, 39] and in Apin
V, Nb and Ta [37, 39] is firmly established by experiment but is not self-evident {39].
Dingle temperatures and relative cross-sectional area changes, the so-called de Haas-
van Alphen scattering quantities, do depend on the kind of hydrogen isotope in Pd [42-
44], This isotope effect is large only for the two extremal orbits on the small ellipsoidal
hole pockets around the point X in k-space. These X-hole pockets contribute less than
5% to the total Fermi surface area. This is also reflected in the contributions to the
conductivity in the dilute system. In Pd(H), at 1% lattice distortion, the total conductivity
o is given by the sum of op = 0.88, 0y = 0.90 and o = 0.14 uQ~" cm™' at. % for the T
sheet, the jungle gym (JG) and the X-hole pockets respectively. So possible isotope
effects in oy are not expressed very strongly in the final value for p. Now, realizing that
the difference in the induced lattice distortion vanishes or at least is very small for the
two isotopes [30], the situation in Pd becomes clear. The hydrogen isotope, which by
itself is an extremely weak scatterer, introduces a lattice distortion of 1% (both for H
and D) giving rise to the measured p value. Differences in p, due to a difference in the
zero-point motion (zpM) for the isotopes are of the same order of magnitude as the
resistivity due to the hydrogen alone (i.e. ~0.001 u2 cm/at. %), which is beyond the
usual experimental accuracy. A reduced conductivity oy by afactor of 2, due to a possible
resonant vibration in the Pd(D) cluster as proposed by Oppeneer ef af [45], would not
really change the conclusion concerning the sample resistivity.

In V, Nb and Ta the situation is slightly different, for the hydrogen isotope alone
gives rise to an appreciable residual resistivity when compared with the calculation
including the perturbed first shell (see table 4). Inorder to investigate possibie zpmeffects
the residual resistivity was recalculated but now with the impurity slightly displaced from
its equilibrium position in the [100] direction. Such displacements can be accounted for
{17] in using the appropriate interstitial displacement vector A, in equation (10}. No
difference in the lattice expansion due to H and D in Nb could be observed {30]. A
3% lattice distortion allows for a maximum value A; = 0.076a, thereby still avoiding
overlapping spheres. Calculated p, values did vary from 1.07 uQ cm/at. % at A; = 0 to
1.02 uQ cm/at. % at Ay = 0.05a. From this no large zpm effects are to be expected, which
confirms the experimental observations.

7. Substitutional impurities

In BCC metals as well as in FCC metals an impurity cluster, consisting of a solute metal
atom and its symmetrically perturbed surroundings, exhibits cubic point-group
symmetry. This high symmetry is destroyed in considering an impurity-vacancy pair.
However, averaging over all orientations of the pair ensures that an isotropic residual
resistivity is obtained in cubic host metals.
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Table 5. Resjdual resistivities in #Q em/at. % for dilute substitutional alloys in Fcc and Boc
metals. Column 2 shows caiculated values for the single impurity in a perfect host. Columns
3 to 6 display calculated p, values as a function of the lattice deformation of the first shell.
The last column shows available experimental information.

O
System Imp.only -0.5% 0% +0.5% 1% Experimental
Cu{Cu) 0.0 0.004 0.0 0.903 0.013
Cu(Ag) 0.189 0.150 0.140 0.140 0.151 0.14
Cu(Rh d%') 0.636 1.006 0.947 0.907 0.884  4.0320.06
Cu({Rh d%") 15.7 14.6 14.1 13.6 131
Cu(Rh scp) 2.99 2.98
Cu(vac) 0.864 1.00 0.964 0.939 0.85=0.21
Cu(Ag, vac) 0.977
Ag(Ag) 0.0 0.004 0.0 0.004 0.015
Ag(Sb) 4.83 5.43 5.51 5.60 5.69 62%02
Ag(vac) 0.834 0.994 0.960 0.938
Ag(Sh, vac) 6.52
Al(Al) 0.0 0.003 0.0 0.003 0.011
Al Cu) 0.932 0.840 0.833 0.830 0.80 = 0.06
AV} 2.06 4.50 4,49 4.48 7602
Al(Ni) 1.64 1.68 1.66 1.64 29=03
Al{vac) - 0.926 0.936 0.954 0.974
Al{Cu, vac) 1.85 ’
Pd(Pd) 0.0 0.047 0.0 0.042 0.162
Pd(Ag) 0.519 0.550 0.532 0.597 0746 1.23
Nb(Nb) 0.0 0.042 0.0 0.040 0.138
Nb{Ta d¥%?) 0.044 0.008 0.035 0.054 023
Nb(Tad%") 0.522 0.569 0.413 0.348
Nb(Cr) 0.400 0.434 0.429 0.511 0.683
Nb(Fe) 5.94 6.36 6.50 6.66
Nb(vac) 3,70 6.48 6.50 6.57

Nb(Ta d%?2, vac) 5.80
Nb(Ta d’!, vac) 6.25
Nb(Cr, vac) 6.15
Nb(Fe, vac) 8.33

Table 5 displays calculated p, values. For the systems, given in the first column, both
single-site and impurity cluster calculations have been performed. In a first calculation
only the impurity, without any environmental effects, was taken into account (column
2). No constant energy shift has been applied to the impurity potential, so the Friedel
sum criterion was generally not met. The first shell of 12 {Fcc systems) or eight (Bcc
systems) perturbed host atoms was accounted for in the second type of calculation. The
columns 3 to 6 show the variation of p, as a function of lattice distortion, which was
varied between —0.0054 and 0.01a for the radial inward or outward displacement of the
first shell atoms. In these calculations the potentials were made to fulfil the Friedel sum
rule by application of a single constant energy shift to all MT potentials in the embedded
cluster. The last column gives experimental data, if available.
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7.1. rcometals

In Cu, Ag, Al and Pd a host MT radius of 0.325a2 was used, which corresponds to
non-touching spheres, ensuring that a slight displacement of first-shell atoms can be
accounted for. For the first time the effect on p, of a perturbed first shell, including
lattice distortion, could be investigated without approximating the real host embedding
and beyond the applicability range of a model ( pseudo)potential description of the host.

Mertig et af [7] calculated the residual resistivity of many impurities in Cu using
self-consistently determined impurity potentials [9]. In these calculations one single
perturbed site was accounted for in an otherwise perfect host. From a comparison of
finite cluster results and these single-site results incJuding the Cu band structure with
experimental data [1], it was found that for Cu(Ag) the calculated p, values are struc-
turally too low. It is seen that the residual resistivity for Cu(Ag) in table 5, using
constructed potentials, is in surprisingly good agreement with experiment. Note that
lattice distortion affects the results only slightly, which also is reflected in the artificial
Cu(Cu) system.

In Cu(Rh) Julianus et af [46] accurately measured p;. Constructed potentials with
Rh in its experimental atomic ground state ([Kr]4d35s!) result in values far too low,
while the [Kr]4d®5s® configuration for Rh leads to values that are much larger than the
experimental value of 4.03 = 0.06 uQ cm/at.%. Presumably the electronic structure of
Rhin Cu is intermediate between [Kr}4d®ss' and [Kr]4d®3s”. This is in accordance with
the p, values obtained from self-consistent potentials (Cu(Rh scp) in table 5). Although
here a lattice constant a = 6.76 Bohr was used in combination with touching MT spheres,
the results are improved significantly when compared with those obtained from con-
structed potentials. For a vacancy in Cu the agreement with experiment is within the
experimental error, regardless of the presence of a first shell with or without lattice
distortion.

One could wonder how the results are influenced upon using host Mt radii cor-
responding to touching spheres, for local lattice distortion does not seem to be that
important. In order to get an impression of the residual resistivities obtained in this way
asingle-site calculation wasperformed. The MTradius and Fermienergyare given in table
3. Resistivities of 0.12 uQ cm/at.% for Cu(Ag), 0.57 uQ cm/at.% for Cu(Rh d8s’),
13.8 uQ cm/at.% for Cu(Rh d”) and 1.052 uQ cm/at.% for Cu(vac) are found. The
resistivity due to a vacancy is increased and approaches the calculated value reported in
{1]. All other py values are lowered. The nice agreement with experiment in Cu(Ag)
and Cu(vac) is spoiled.

In Ag(Sb) qualitative agreement with experiment is obtained. For a larger MT radius
the situation is expected to get worse on the basis of former observations made in, for
instance, Cu(Rh). A vacancy in Ag gives rise to a residual resistivity that isslightly lower
than thatin Cu. Inclusion of the first shell indeed influences p although lattice distortion
seems to be of little importance. The resistivity due to a Sb~vacancy pair is larger than
the sum of the resistivities caused by the individual defects, though the difference is not
spectacular. - '

In pure Al again a very small residual resistivity was found upon deforming the
lattice. For Al{Cu) the agreement is within 17% in the single-site case. The calculated
value of pyequals the experimental value after adding the first shell, as was found before
in Cu(Ag). In the dilute V and Ni alloys of Al the agreement between theory and
experiment is less satisfactory. The experimental data on Al alloys in table 5 were
taken from [47]. The resistivity in Al(Cu, vac) almost equals the sum of the single-site
resistivities in Al(Cu} and Al(vac), thereby neglecting environmental effects.
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In Pd the Fermi level falls in the d band. This gives rise to a complicated electronic
structure at the Fermi energy, contrary to the situation in Cu and Ag, where the d band
is well below &¢. In Al no d electrons are present at all. The sepsitivity to lattice
deformation is found to be a factor of 10 larger in Pd(Pd) when compared with Cu, Ag
and Al. This cannot be explained simply from the density of states at the Fermi energy
for this effect would point in the opposite direction. A plausible explanation is offered
in realizing that d electrons behave rather localized (flat £, versus & relation) in contrast
with s electrons ( parabolic shape of ¢, versus k relation). When a transition-metal atom
(Pd, Cuor Ag)is displaced from its equilibrium position it will drag its d electrons along,
giving rise to an appreciable alteration in the spatial charge distribution. In Pd the d
electrons at g, in Bloch states with only little dispersion, carry the electric current.
These d electrons are strongly scattered by the perturbation potential resulting from the
lattice deformation which in turn is expressed as a substantial resistivity increase. Truly
delocalized s electrons at £¢ in Cu and Ag are not that sensitive to the precise position
of the host metal nuclei, indicating that for these metals a jellium-like description of the
electrons at ep might lead to satisfactory resulis.

For Pd(Ag) the agreement with experiment is not very satisfactory, although the
situation is not as bad as in non-self-consistent Cu{Rh). At 1% lattice distortion the
calculated residual resistivity is only about half of the experimental value, probably due
to the complicated electronic structure of the palladium host and of the impurity clustes.

7.2, Nb, a BcC metal

Up to the present no calculated residual resistivities in BCC transition metals have
been reported on. Presumably the limited number of systems for which p, has been
determined experimentaliy is a drawback. However, considerable interest exists in the
scattering properties of substitutional impurities in Nb in connection with electro-
migration theory[14, 48, 49]. Inthis section several impurities in Nb will receive attention
as well as vacancy—impurity pairs. An elementary step in the diffusion (and thus in
electromigration) of substitutional impurities in Nb is thought to proceed via a
mechanism whereby the impurity exchanges position with a neighbouring vacancy.

In close analogy to the FCC systems treated in section 7.1 a host MT radius smaller
than that corresponding to touching spheres (R% = 0.433a) was used. Again the same
MT radius (0.3354) as for the interstitial-impurity study was used. Note however that in
BCC metals the reduction of this radius compared with the radius corresponding to
touching spheres is larger than in FCC systems.

A marked dependence onlattice distortion in Nb(Nb) is found. The same explanation
as for Pd(Pd) applies. For Nb also the Fermi level crosses the flat d bands. Interestingly
the resistivity increase due to Ta at 0.5% lattice distortion is comparable to g, in Nb(Nb)
at 0.5% lattice distortion. A vacancy in Nb, which corresponds to a 4d*3s! valence
electron deficiency, gives pp = 6.50 uQ cm/at. % at 0% lattice distortion. The vacancy
alone results in a lower value (5.70 pQ ecm/at.%). These large residual resistivities arise
from the removal of four localized d electrons around the Fermi eneegy. The residual
resistivity of the Ta~vacancy pair, neglecting environmental effects, is dominated by the
vacancy. This also holds for the Cr—vacancy pair. Replacement of a Nb atom by an Fe
atom with an [Ar]3d®5s? configuration also leads to a considerable resistivity, com-
parable to that due to a vacancy. It is therefore not surprising to find the Fe-vacancy
pair giving the largest residual resistivity in Nb of all defects investigated here. Possible
magnetic moments on Cr or on Fe have been neglected.
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Using a larger host MT sphere of 0.391a (see table 3) resulted in lower residual
resistivities in Nb(vac). Neglecting the first shell a value py = 4.53 uQ cm/at. % is cal-
culated, which is lower than the value of 5.70 u<2 cm/at. % in the second column of table
5. Further it is noted that the experimental g, value for the Nb(Ta) system is best
reproduced when using the [Xe]4f'*5d%6s! atomic configuration for the Ta atom. This is
the analogue of the Nb [Kr]4d*5s' atomic configuration as used in the construction of
the host potential. The alternative [Xe]4f*5d%s? configuration, which is the ground-
state configuration in atomic Ta, resulted in much Jower residual resistivities. Such a
marked dependence of p, on the specific electronic configuration of the atom used in
the impurity potential construction, as found for Tain Nb or Rhin Cu, has been reported
on earlier by Mrosan and Lehmann [50]. In using a larger host MT radius (0.391a) the
residual resistivity due in Nb(Ta d%’) was lowered slightly from 0.413 uQ cm/at.% to
0.364 u$ cm/at.% while for Nb(Ta d%?) a relatively large change from 0.035 4 cm/
at.% to 0.016 uQ cm/at.% is observed. In these calculations lattice deformation was
absent while the Friedel sum rule was satisfied.

8. Conclusions

Residual resistivities for interstitial and substitutional impurities in both FCC and Bcc
metals have been calculated. The Kkr Green function method was used to calculate
the scattering ~matrix for an impurity cluster, which was modelled by a collection of
spherically symmetric muffin-tin potentials. This cluster was embedded in an otherwise
perfect crystal, also modelled by a lattice of MT potentials. The influence of the perturbed
metal atoms surrounding the impurity on p, was investigated thoroughly for the first
time. Local charge neutrality in the impurity cluster was guaranteed by requiring fulfil-
ment of the Friede] sum rule.

The influence of local lattice distortion around interstitial as well as substitutional
impurities is pronounced in metals where the Fermi energy falls in the d band of the Dos
(Ni, Pd, V, Nb and Ta). Other metals having an s like (Cu and Ag) or sp like (Al) pos
at £r do not show a large dependence of p, on the lattice distortion. This is explained
through the localized character of the d electrons when compared with the s and p
electrons. A slight displacement of a transition-metal atom will drag the d electrons
along with it, giving rise to a relatively large local change in charge density. The d
electrons in Blach states at £z with a flat dispersion relation are strongly scattered by the
resulting potential. Electrons in delocalized s-like Bloch states do not follow the metal
atoms that strictly, resulting in a much smaller resistivity increase as a function of lattice
deformation.

It was found that, on the one hand, hydrogen alone in Cu and Ag constitutes a strong
scatterer contributing about 90% of the total resistivity. On the other hand, in Pd and
Ni it does not result in a significant residual resistivity. Hydrogen without a first shell in
V, Nb and Ta gives p, values intermediate between the above-mentioned extremes.
Except for Hin Cuand Ag, the inclusion of the first shell is an absolute necessity in order
to obtain values comparable with measured data. Hydrogen/deuterium isotope effects
on the basis of a difference in zero-point motion are not to be expected in Pd, V, Nband
Ta, which is in agreement with experiment.

Huge contributions due to the back-scattering by the Al crystal were detected in
AI(H). This explains the large difference between, on the one hand, results obtained
from the Friedel expression or from finite cluster calculations and, on the other hand,
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residual resistivities obtained in the real Al lattice. Such strong effects were not found
in Cu(H), Ag(H) and the substitutional Al ailoys.

An ever returning point of discussion is the choice of the MT radit for the host and
interstitial atoms. One might argue that for each system there exists an optimum ratio
Risst /Rir at which experiment and theory match. Such a ratio indeed can be found for
the Cu(H) system but for Pd(H), at the experimental lattice distortion (~1%}), the
existence of such a ratio in the present MT model is highly questionable. Therefore
a more uniform approach was selected. For interstitial impurities in FCC metals the
prescription of Switendick [51] was followed (R /R = 1.86). For interstitials in BcC
metals a different ratio of 1.5 was used. All MT radii obtained in this manner have in
common that the interstitial MT radius lies between 1.20 and 1.40 Bohr. In this way the
interstitial MT spheres do justice to the maximum in the radial charge distribution of the
hydrogen atom in its ground state. Such a maximum corresponds to a more or less
localized state, which has been found in several metal-hydrogen systems [52, 53].

Touching host MT spheres always have the disadvantage that they do not allow for
lattice deformation. In many systems lattice deformation is present around the defect
and it can influence the residual resistivity considerably. The RS /Riy ratios used
throughout this paper make it possible to account for these effeets.

In the substitutional FCC metal-impurity systems investigated in this work the
description using a MT radius of 0.325¢ led to good resuits in Cu(Ag), Cu(vac) and
ANCu). For Ag(Sb), Al(V) and Al(Ni) qualitative agreement is obtained while non-
self-consistent Rh in Cu is problematic. Lattice distortion is only important in Pd having
alarge d-like DOs at er. In most cases the inclusion of z first shell of perturbed host atoms
did improve the p, values, but not to such an extent that discrepancies between theory
and experiment disappeared. Increase of the host MT radius to 0.3544 (touching spheres})
leads to less satisfactory values for py. Touching spheres might overestimate the part of
the crystal potential that can be approximatedsafely by a spherically averaged potential,
but the precise cause is not clear.

In the BcC metal Nb the substitution of a vacancy or an Fe atom gives a large residual
resistivity while for Ta or Cr, roughly speaking, g, is a factor of 10 smaller. In a sense
this reflects the differences in the number of valence electrons (AZ) which are -5, +3,
Oand +1 for a vacancy, Fe, Ta and Cr respectively. The influence of lattice distortion in
Nb can be considerable (Nb(Ta}).

It is found that the residual resistivity due to an impurity-vacancy pair ¢an be
estimated by summing the single-site values for pg of the individual scatterers. However,
if both the impurity and the vacancy are strong scatterers, multiple scattering effects can
be large. In Nb(Fe, vac) a reduction was found amounting to 30%.

Fulfilment of the Friedel sum rule in substitutional alloys was obtained by shifting
all MT potentials in the impurity cluster by the same constant potential. This choice is
expected to give reliable results in those cases where charge transter to or from the first
shel! is reasonably approximated in constructing the alloy potential by overlapping
atomic charge densities. In allowing for different shifts for the impurity and the first shell
one introduces a degree of freedom. This degree of freedom could then be used o
simulate large flows of charge in the impurity cluster. Test calculations showed that the
results for Cu(Rh) can be improved in this way starting from either of the two Rh
configurations. In the present work such manipulations were avoided. Precise infor-
mation on these charge flows should come from a self-consistent approach. The poten-
tials constructed from atomic charge densities in combination with a single constant
energy shift for all perturbed transition-metal atoms clearly give good resultsinsituations
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where the defect has a relatively simple electronic structure. Interstitial hydrogen is an
example of such a defect as well as the substitutional systems Cu(Ag) and AKCu). In
cases where impurity d electrons are to be redistributed in virtual bound states around
the Fermi energy, calculated residual resistivities show larger deviations from the exper-

imental data. Nevertheless in some cases reasonable resuits can be obtained (e.g.
Nb(Ta)).
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